Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.
Department of Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria.
Lancet Digit Health. 2024 Apr;6(4):e251-e260. doi: 10.1016/S2589-7500(23)00265-0.
The diagnosis of cardiac amyloidosis can be established non-invasively by scintigraphy using bone-avid tracers, but visual assessment is subjective and can lead to misdiagnosis. We aimed to develop and validate an artificial intelligence (AI) system for standardised and reliable screening of cardiac amyloidosis-suggestive uptake and assess its prognostic value, using a multinational database of Tc-scintigraphy data across multiple tracers and scanners.
In this retrospective, international, multicentre, cross-tracer development and validation study, 16 241 patients with 19 401 scans were included from nine centres: one hospital in Austria (consecutive recruitment Jan 4, 2010, to Aug 19, 2020), five hospital sites in London, UK (consecutive recruitment Oct 1, 2014, to Sept 29, 2022), two centres in China (selected scans from Jan 1, 2021, to Oct 31, 2022), and one centre in Italy (selected scans from Jan 1, 2011, to May 23, 2023). The dataset included all patients referred to whole-body Tc-scintigraphy with an anterior view and all Tc-labelled tracers currently used to identify cardiac amyloidosis-suggestive uptake. Exclusion criteria were image acquisition at less than 2 h (Tc-3,3-diphosphono-1,2-propanodicarboxylic acid, Tc-hydroxymethylene diphosphonate, and Tc-methylene diphosphonate) or less than 1 h (Tc-pyrophosphate) after tracer injection and if patients' imaging and clinical data could not be linked. Ground truth annotation was derived from centralised core-lab consensus reading of at least three independent experts (CN, TT-W, and JN). An AI system for detection of cardiac amyloidosis-associated high-grade cardiac tracer uptake was developed using data from one centre (Austria) and independently validated in the remaining centres. A multicase, multireader study and a medical algorithmic audit were conducted to assess clinician performance compared with AI and to evaluate and correct failure modes. The system's prognostic value in predicting mortality was tested in the consecutively recruited cohorts using cox proportional hazards models for each cohort individually and for the combined cohorts.
The prevalence of cases positive for cardiac amyloidosis-suggestive uptake was 142 (2%) of 9176 patients in the Austrian, 125 (2%) of 6763 patients in the UK, 63 (62%) of 102 patients in the Chinese, and 103 (52%) of 200 patients in the Italian cohorts. In the Austrian cohort, cross-validation performance showed an area under the curve (AUC) of 1·000 (95% CI 1·000-1·000). Independent validation yielded AUCs of 0·997 (0·993-0·999) for the UK, 0·925 (0·871-0·971) for the Chinese, and 1·000 (0·999-1·000) for the Italian cohorts. In the multicase multireader study, five physicians disagreed in 22 (11%) of 200 cases (Fleiss' kappa 0·89), with a mean AUC of 0·946 (95% CI 0·924-0·967), which was inferior to AI (AUC 0·997 [0·991-1·000], p=0·0040). The medical algorithmic audit demonstrated the system's robustness across demographic factors, tracers, scanners, and centres. The AI's predictions were independently prognostic for overall mortality (adjusted hazard ratio 1·44 [95% CI 1·19-1·74], p<0·0001).
AI-based screening of cardiac amyloidosis-suggestive uptake in patients undergoing scintigraphy was reliable, eliminated inter-rater variability, and portended prognostic value, with potential implications for identification, referral, and management pathways.
Pfizer.
通过使用骨靶向示踪剂进行闪烁扫描,可以非侵入性地诊断心脏淀粉样变性,但视觉评估具有主观性,可能导致误诊。我们旨在开发和验证一种人工智能(AI)系统,用于对心脏淀粉样变性提示摄取进行标准化和可靠的筛查,并使用多国多示踪剂和扫描仪的 Tc 闪烁扫描数据评估其预后价值。
在这项回顾性的、国际性的、多中心的、多示踪剂开发和验证研究中,纳入了来自 9 个中心的 16411 例患者(奥地利的一个医院连续入组时间为 2010 年 1 月 4 日至 2020 年 8 月 19 日;英国伦敦的 5 个医院站点连续入组时间为 2014 年 10 月 1 日至 2022 年 9 月 29 日;中国的 2 个中心从 2021 年 1 月 1 日至 2022 年 10 月 31 日选择扫描;意大利的一个中心从 2011 年 1 月 1 日至 2023 年 5 月 23 日选择扫描)。该数据集包括所有因全身 Tc 闪烁扫描前位且所有目前用于识别心脏淀粉样变性提示摄取的 Tc 标记示踪剂而转诊的患者。排除标准为:示踪剂注射后 2 小时内(Tc-3,3-二膦酸基-1,2-丙烷二羧酸、羟亚甲基二膦酸盐和亚甲基二膦酸盐)或 1 小时内(焦磷酸盐)采集图像,以及如果无法将患者的影像学和临床数据联系起来。地面真相注释源自至少三位独立专家(CN、TT-W 和 JN)的中心核心实验室共识阅读。使用来自一个中心(奥地利)的数据开发了一种用于检测心脏淀粉样变性相关高等级心脏示踪剂摄取的人工智能系统,并在其余中心进行了独立验证。进行了一项多病例、多读者研究和医疗算法审核,以评估与 AI 相比临床医生的表现,并评估和纠正故障模式。使用每个队列的 Cox 比例风险模型和联合队列,在连续入组的队列中测试了该系统预测死亡率的预后价值。
在奥地利、英国、中国和意大利队列中,心脏淀粉样变性提示摄取阳性病例的患病率分别为 9176 例患者中的 142 例(2%)、6763 例患者中的 125 例(2%)、102 例患者中的 63 例(62%)和 200 例患者中的 103 例(52%)。在奥地利队列中,交叉验证性能显示曲线下面积(AUC)为 1.000(95%CI 1.000-1.000)。独立验证的 AUC 分别为英国队列的 0.997(0.993-0.999)、中国队列的 0.925(0.871-0.971)和意大利队列的 1.000(0.999-1.000)。在多病例、多读者研究中,5 位医生在 200 例病例中的 22 例(11%)存在分歧(Fleiss' kappa 0.89),平均 AUC 为 0.946(95%CI 0.924-0.967),低于 AI(AUC 0.997 [0.991-1.000],p=0.0040)。医疗算法审核证明了该系统在人口统计学因素、示踪剂、扫描仪和中心方面的稳健性。AI 的预测对总体死亡率具有独立的预后价值(调整后的危险比 1.44 [95%CI 1.19-1.74],p<0.0001)。
在接受闪烁扫描的患者中,基于人工智能的心脏淀粉样变性提示摄取筛查是可靠的,消除了读者间的变异性,并预示了预后价值,这可能对识别、转诊和管理途径产生影响。
辉瑞公司。