文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生成式人工智能能够生成骨闪烁显像图像,并在数据受限的环境中提高深度学习模型的泛化能力。

Generative artificial intelligence enables the generation of bone scintigraphy images and improves generalization of deep learning models in data-constrained environments.

作者信息

Haberl David, Ning Jing, Kluge Kilian, Kumpf Katarina, Yu Josef, Jiang Zewen, Constantino Claudia, Monaci Alice, Starace Maria, Haug Alexander R, Calabretta Raffaella, Camoni Luca, Bertagna Francesco, Mascherbauer Katharina, Hofer Felix, Albano Domenico, Sciagra Roberto, Oliveira Francisco, Costa Durval, Nitsche Christian, Hacker Marcus, Spielvogel Clemens P

机构信息

Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Austria.

Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria.

出版信息

Eur J Nucl Med Mol Imaging. 2025 Jun;52(7):2355-2368. doi: 10.1007/s00259-025-07091-8. Epub 2025 Jan 29.


DOI:10.1007/s00259-025-07091-8
PMID:39878897
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12119683/
Abstract

PURPOSE: Advancements of deep learning in medical imaging are often constrained by the limited availability of large, annotated datasets, resulting in underperforming models when deployed under real-world conditions. This study investigated a generative artificial intelligence (AI) approach to create synthetic medical images taking the example of bone scintigraphy scans, to increase the data diversity of small-scale datasets for more effective model training and improved generalization. METHODS: We trained a generative model on Tc-bone scintigraphy scans from 9,170 patients in one center to generate high-quality and fully anonymized annotated scans of patients representing two distinct disease patterns: abnormal uptake indicative of (i) bone metastases and (ii) cardiac uptake indicative of cardiac amyloidosis. A blinded reader study was performed to assess the clinical validity and quality of the generated data. We investigated the added value of the generated data by augmenting an independent small single-center dataset with synthetic data and by training a deep learning model to detect abnormal uptake in a downstream classification task. We tested this model on 7,472 scans from 6,448 patients across four external sites in a cross-tracer and cross-scanner setting and associated the resulting model predictions with clinical outcomes. RESULTS: The clinical value and high quality of the synthetic imaging data were confirmed by four readers, who were unable to distinguish synthetic scans from real scans (average accuracy: 0.48% [95% CI 0.46-0.51]), disagreeing in 239 (60%) of 400 cases (Fleiss' kappa: 0.18). Adding synthetic data to the training set improved model performance by a mean (± SD) of 33(± 10)% AUC (p < 0.0001) for detecting abnormal uptake indicative of bone metastases and by 5(± 4)% AUC (p < 0.0001) for detecting uptake indicative of cardiac amyloidosis across both internal and external testing cohorts, compared to models without synthetic training data. Patients with predicted abnormal uptake had adverse clinical outcomes (log-rank: p < 0.0001). CONCLUSIONS: Generative AI enables the targeted generation of bone scintigraphy images representing different clinical conditions. Our findings point to the potential of synthetic data to overcome challenges in data sharing and in developing reliable and prognostic deep learning models in data-limited environments.

摘要

目的:深度学习在医学成像领域的进展常常受到大型标注数据集有限可用性的限制,导致在实际应用中模型表现不佳。本研究以骨闪烁扫描为例,探讨了一种生成式人工智能(AI)方法来创建合成医学图像,以增加小规模数据集的数据多样性,从而实现更有效的模型训练和更好的泛化能力。 方法:我们在一个中心的9170例患者的Tc骨闪烁扫描数据上训练了一个生成模型,以生成高质量且完全匿名的标注扫描图像,这些图像代表两种不同的疾病模式:(i)提示骨转移的异常摄取和(ii)提示心脏淀粉样变性的心脏摄取。进行了一项盲法阅片者研究,以评估生成数据的临床有效性和质量。我们通过用合成数据扩充一个独立的小型单中心数据集,并在下游分类任务中训练一个深度学习模型来检测异常摄取,研究了生成数据的附加价值。我们在跨示踪剂和跨扫描仪设置下,对来自四个外部站点的6448例患者的7472次扫描进行了测试,并将所得模型预测结果与临床结果相关联。 结果:四位阅片者证实了合成成像数据的临床价值和高质量,他们无法区分合成扫描图像和真实扫描图像(平均准确率:0.48% [95% CI 0.46 - 0.51]),在400例病例中有239例(60%)存在分歧(Fleiss' kappa:0.18)。与没有合成训练数据的模型相比,在内部和外部测试队列中,将合成数据添加到训练集中可使检测提示骨转移的异常摄取的模型性能平均(±标准差)提高33(±10)%的AUC(p < 0.0001),检测提示心脏淀粉样变性的摄取的模型性能提高5(±4)%的AUC(p < 0.0001)。预测有异常摄取的患者具有不良临床结局(对数秩检验:p < 0.0001)。 结论:生成式AI能够针对性地生成代表不同临床情况的骨闪烁扫描图像。我们的研究结果表明,合成数据在克服数据共享挑战以及在数据有限的环境中开发可靠的预后深度学习模型方面具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddff/12119683/f5ce81d7bb38/259_2025_7091_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddff/12119683/2cb9a419b408/259_2025_7091_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddff/12119683/0721c029360c/259_2025_7091_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddff/12119683/15783e2fb53c/259_2025_7091_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddff/12119683/9b904f656ea5/259_2025_7091_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddff/12119683/f5ce81d7bb38/259_2025_7091_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddff/12119683/2cb9a419b408/259_2025_7091_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddff/12119683/0721c029360c/259_2025_7091_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddff/12119683/15783e2fb53c/259_2025_7091_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddff/12119683/9b904f656ea5/259_2025_7091_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddff/12119683/f5ce81d7bb38/259_2025_7091_Fig5_HTML.jpg

相似文献

[1]
Generative artificial intelligence enables the generation of bone scintigraphy images and improves generalization of deep learning models in data-constrained environments.

Eur J Nucl Med Mol Imaging. 2025-6

[2]
Diagnosis and prognosis of abnormal cardiac scintigraphy uptake suggestive of cardiac amyloidosis using artificial intelligence: a retrospective, international, multicentre, cross-tracer development and validation study.

Lancet Digit Health. 2024-4

[3]
Artificial intelligence-based cardiac transthyretin amyloidosis detection and scoring in scintigraphy imaging: multi-tracer, multi-scanner, and multi-center development and evaluation study.

Eur J Nucl Med Mol Imaging. 2025-2-5

[4]
Artificial intelligence-based analysis of whole-body bone scintigraphy: The quest for the optimal deep learning algorithm and comparison with human observer performance.

Z Med Phys. 2024-5

[5]
Generative artificial intelligence to produce high-fidelity blastocyst-stage embryo images.

Hum Reprod. 2024-6-3

[6]
Merging synthetic and real embryo data for advanced AI predictions.

Sci Rep. 2025-3-21

[7]
Creating High Fidelity Synthetic Pelvis Radiographs Using Generative Adversarial Networks: Unlocking the Potential of Deep Learning Models Without Patient Privacy Concerns.

J Arthroplasty. 2023-10

[8]
Augmenting a spine CT scans dataset using VAEs, GANs, and transfer learning for improved detection of vertebral compression fractures.

Comput Biol Med. 2025-1

[9]
Deep learning-based image analysis in muscle histopathology using photo-realistic synthetic data.

Commun Med (Lond). 2025-3-6

[10]
Synthetic Medical Images for Robust, Privacy-Preserving Training of Artificial Intelligence: Application to Retinopathy of Prematurity Diagnosis.

Ophthalmol Sci. 2022-2-11

本文引用的文献

[1]
Generating Synthetic Data for Medical Imaging.

Radiology. 2024-9

[2]
Generative models improve fairness of medical classifiers under distribution shifts.

Nat Med. 2024-4

[3]
Predicting mortality from AI cardiac volumes mass and coronary calcium on chest computed tomography.

Nat Commun. 2024-3-29

[4]
Diagnosis and prognosis of abnormal cardiac scintigraphy uptake suggestive of cardiac amyloidosis using artificial intelligence: a retrospective, international, multicentre, cross-tracer development and validation study.

Lancet Digit Health. 2024-4

[5]
Deep learning for [F]fluorodeoxyglucose-PET-CT classification in patients with lymphoma: a dual-centre retrospective analysis.

Lancet Digit Health. 2024-2

[6]
TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images.

Radiol Artif Intell. 2023-7-5

[7]
Automated Brain Tumor Detection and Segmentation for Treatment Response Assessment Using Amino Acid PET.

J Nucl Med. 2023-10

[8]
Improved long-term survival with tafamidis treatment in patients with transthyretin amyloid cardiomyopathy and severe heart failure symptoms.

Eur J Heart Fail. 2023-11

[9]
BS-80K: The first large open-access dataset of bone scan images.

Comput Biol Med. 2022-12

[10]
Using domain knowledge for robust and generalizable deep learning-based CT-free PET attenuation and scatter correction.

Nat Commun. 2022-10-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索