Suppr超能文献

中国 CT 血管造影图像上颅内动脉瘤检测的深度学习模型:一项逐步的、多中心的早期临床验证研究。

A deep-learning model for intracranial aneurysm detection on CT angiography images in China: a stepwise, multicentre, early-stage clinical validation study.

机构信息

Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Department of Radiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.

出版信息

Lancet Digit Health. 2024 Apr;6(4):e261-e271. doi: 10.1016/S2589-7500(23)00268-6.

Abstract

BACKGROUND

Artificial intelligence (AI) models in real-world implementation are scarce. Our study aimed to develop a CT angiography (CTA)-based AI model for intracranial aneurysm detection, assess how it helps clinicians improve diagnostic performance, and validate its application in real-world clinical implementation.

METHODS

We developed a deep-learning model using 16 546 head and neck CTA examination images from 14 517 patients at eight Chinese hospitals. Using an adapted, stepwise implementation and evaluation, 120 certified clinicians from 15 geographically different hospitals were recruited. Initially, the AI model was externally validated with images of 900 digital subtraction angiography-verified CTA cases (examinations) and compared with the performance of 24 clinicians who each viewed 300 of these cases (stage 1). Next, as a further external validation a multi-reader multi-case study enrolled 48 clinicians to individually review 298 digital subtraction angiography-verified CTA cases (stage 2). The clinicians reviewed each CTA examination twice (ie, with and without the AI model), separated by a 4-week washout period. Then, a randomised open-label comparison study enrolled 48 clinicians to assess the acceptance and performance of this AI model (stage 3). Finally, the model was prospectively deployed and validated in 1562 real-world clinical CTA cases.

FINDINGS

The AI model in the internal dataset achieved a patient-level diagnostic sensitivity of 0·957 (95% CI 0·939-0·971) and a higher patient-level diagnostic sensitivity than clinicians (0·943 [0·921-0·961] vs 0·658 [0·644-0·672]; p<0·0001) in the external dataset. In the multi-reader multi-case study, the AI-assisted strategy improved clinicians' diagnostic performance both on a per-patient basis (the area under the receiver operating characteristic curves [AUCs]; 0·795 [0·761-0·830] without AI vs 0·878 [0·850-0·906] with AI; p<0·0001) and a per-aneurysm basis (the area under the weighted alternative free-response receiver operating characteristic curves; 0·765 [0·732-0·799] vs 0·865 [0·839-0·891]; p<0·0001). Reading time decreased with the aid of the AI model (87·5 s vs 82·7 s, p<0·0001). In the randomised open-label comparison study, clinicians in the AI-assisted group had a high acceptance of the AI model (92·6% adoption rate), and a higher AUC when compared with the control group (0·858 [95% CI 0·850-0·866] vs 0·789 [0·780-0·799]; p<0·0001). In the prospective study, the AI model had a 0·51% (8/1570) error rate due to poor-quality CTA images and recognition failure. The model had a high negative predictive value of 0·998 (0·994-1·000) and significantly improved the diagnostic performance of clinicians; AUC improved from 0·787 (95% CI 0·766-0·808) to 0·909 (0·894-0·923; p<0·0001) and patient-level sensitivity improved from 0·590 (0·511-0·666) to 0·825 (0·759-0·880; p<0·0001).

INTERPRETATION

This AI model demonstrated strong clinical potential for intracranial aneurysm detection with improved clinician diagnostic performance, high acceptance, and practical implementation in real-world clinical cases.

FUNDING

National Natural Science Foundation of China.

TRANSLATION

For the Chinese translation of the abstract see Supplementary Materials section.

摘要

背景

人工智能(AI)模型在实际应用中还很稀缺。我们的研究旨在开发一种基于 CT 血管造影(CTA)的颅内动脉瘤检测 AI 模型,评估其如何帮助临床医生提高诊断性能,并验证其在真实临床实施中的应用。

方法

我们使用来自中国 8 家医院的 14517 名患者的 16546 例头颈部 CTA 检查图像开发了一个深度学习模型。通过适应性的、逐步的实施和评估,招募了来自 15 个地理位置不同的医院的 120 名认证临床医生。最初,使用 900 例经数字减影血管造影验证的 CTA 病例的外部验证图像(检查)和 24 名每位观看 300 例这些病例的临床医生的表现进行比较(第 1 阶段)。接下来,作为进一步的外部验证,一项多读者多病例研究纳入了 48 名临床医生,以单独查看 298 例经数字减影血管造影验证的 CTA 病例(第 2 阶段)。临床医生在 4 周的洗脱期后,两次(即有和没有 AI 模型)查看每个 CTA 检查。然后,一项随机开放标签比较研究纳入了 48 名临床医生,以评估该 AI 模型的接受度和性能(第 3 阶段)。最后,该模型在 1562 例真实世界的临床 CTA 病例中进行了前瞻性部署和验证。

结果

内部数据集的 AI 模型在患者水平上的诊断敏感性为 0.957(95%CI 0.939-0.971),高于外部数据集的临床医生的诊断敏感性(0.943 [0.921-0.961] vs 0.658 [0.644-0.672];p<0.0001)。在多读者多病例研究中,AI 辅助策略在基于患者(接受者操作特征曲线下面积[AUCs];无 AI 时为 0.795 [0.761-0.830],有 AI 时为 0.878 [0.850-0.906];p<0.0001)和基于动脉瘤(加权替代自由反应接受者操作特征曲线下面积;0.765 [0.732-0.799] vs 0.865 [0.839-0.891];p<0.0001)方面都提高了临床医生的诊断性能。阅读时间随着 AI 模型的辅助而减少(87.5 秒 vs 82.7 秒,p<0.0001)。在随机开放标签比较研究中,AI 辅助组的临床医生对 AI 模型的接受度很高(92.6%的采用率),与对照组相比,AUC 更高(0.858 [95%CI 0.850-0.866] vs 0.789 [0.780-0.799];p<0.0001)。在前瞻性研究中,由于 CTA 图像质量差和识别失败,AI 模型的错误率为 0.51%(8/1570)。该模型具有很高的阴性预测值(0.998 [0.994-1.000]),显著提高了临床医生的诊断性能;AUC 从 0.787(95%CI 0.766-0.808)提高到 0.909(0.894-0.923;p<0.0001),患者水平的敏感性从 0.590(0.511-0.666)提高到 0.825(0.759-0.880;p<0.0001)。

结论

该 AI 模型在颅内动脉瘤检测方面具有很强的临床应用潜力,提高了临床医生的诊断性能,具有较高的接受度,并在真实临床病例中得到了实际应用。

资金

国家自然科学基金。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验