Suppr超能文献

使用时间序列预测模型预测量子发射器波动。

Predicting quantum emitter fluctuations with time-series forecasting models.

作者信息

Ramezani Fereshteh, Strasbourg Matthew, Parvez Sheikh, Saxena Ravindra, Jariwala Deep, Borys Nicholas J, Whitaker Bradley M

机构信息

Electrical and Computer Engineering Department, Montana State University, Bozeman, USA.

Materials Science Program, Montana State University, Bozeman, USA.

出版信息

Sci Rep. 2024 Mar 22;14(1):6920. doi: 10.1038/s41598-024-56517-0.

Abstract

2D materials have important fundamental properties allowing for their use in many potential applications, including quantum computing. Various Van der Waals materials, including Tungsten disulfide (WS2), have been employed to showcase attractive device applications such as light emitting diodes, lasers and optical modulators. To maximize the utility and value of integrated quantum photonics, the wavelength, polarization and intensity of the photons from a quantum emission (QE) must be stable. However, random variation of emission energy, caused by the inhomogeneity in the local environment, is a major challenge for all solid-state single photon emitters. In this work, we assess the random nature of the quantum fluctuations, and we present time series forecasting deep learning models to analyse and predict QE fluctuations for the first time. Our trained models can roughly follow the actual trend of the data and, under certain data processing conditions, can predict peaks and dips of the fluctuations. The ability to anticipate these fluctuations will allow physicists to harness quantum fluctuation characteristics to develop novel scientific advances in quantum computing that will greatly benefit quantum technologies.

摘要

二维材料具有重要的基本特性,使其可用于许多潜在应用,包括量子计算。各种范德华材料,包括二硫化钨(WS2),已被用于展示有吸引力的器件应用,如发光二极管、激光器和光调制器。为了最大限度地提高集成量子光子学的效用和价值,量子发射(QE)产生的光子的波长、偏振和强度必须稳定。然而,由局部环境的不均匀性引起的发射能量的随机变化,是所有固态单光子发射器面临的主要挑战。在这项工作中,我们评估了量子涨落的随机性,并首次提出了时间序列预测深度学习模型来分析和预测量子发射涨落。我们训练的模型可以大致跟踪数据的实际趋势,并且在某些数据处理条件下,可以预测涨落的峰值和谷值。预测这些涨落的能力将使物理学家能够利用量子涨落特性,在量子计算领域取得新的科学进展,这将极大地造福于量子技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bd3/10959974/46305cf7c99d/41598_2024_56517_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验