Sutula Madison, Christen Ian, Bersin Eric, Walsh Michael P, Chen Kevin C, Mallek Justin, Melville Alexander, Titze Michael, Bielejec Edward S, Hamilton Scott, Braje Danielle, Dixon P Benjamin, Englund Dirk R
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA.
Nat Mater. 2023 Nov;22(11):1338-1344. doi: 10.1038/s41563-023-01644-8. Epub 2023 Aug 21.
Solid-state quantum emitters have emerged as a leading quantum memory for quantum networking applications. However, standard optical characterization techniques are neither efficient nor repeatable at scale. Here we introduce and demonstrate spectroscopic techniques that enable large-scale, automated characterization of colour centres. We first demonstrate the ability to track colour centres by registering them to a fabricated machine-readable global coordinate system, enabling a systematic comparison of the same colour centre sites over many experiments. We then implement resonant photoluminescence excitation in a widefield cryogenic microscope to parallelize resonant spectroscopy, achieving two orders of magnitude speed-up over confocal microscopy. Finally, we demonstrate automated chip-scale characterization of colour centres and devices at room temperature, imaging thousands of microscope fields of view. These tools will enable the accelerated identification of useful quantum emitters at chip scale, enabling advances in scaling up colour centre platforms for quantum information applications, materials science and device design and characterization.
固态量子发射器已成为量子网络应用中领先的量子存储器。然而,标准的光学表征技术在大规模应用时既效率低下又不可重复。在此,我们介绍并展示了能够对色心进行大规模、自动化表征的光谱技术。我们首先展示了通过将色心注册到制造的机器可读全局坐标系中来跟踪色心的能力,从而能够在多个实验中对相同的色心位点进行系统比较。然后,我们在宽场低温显微镜中实现共振光致发光激发,以使共振光谱并行化,与共聚焦显微镜相比,速度提高了两个数量级。最后,我们展示了在室温下对色心和器件进行芯片级自动表征,对数千个显微镜视野进行成像。这些工具将加速在芯片规模上识别有用的量子发射器,推动色心平台在量子信息应用、材料科学以及器件设计与表征等方面的扩展发展。