Department of Geographical & Sustainability Sciences, University of Iowa, Iowa City, IA, USA.
, Iowa City, USA.
Antimicrob Resist Infect Control. 2024 Mar 22;13(1):34. doi: 10.1186/s13756-024-01388-3.
While the use of cumulative susceptibility reports, antibiograms, is recommended for improved empiric therapy and antibiotic stewardship, the predictive ability of antibiograms has not been well-studied. While enhanced antibiograms have been shown to better capture variation in susceptibility profiles by characteristics such as infection site or patient age, the potential for seasonal or spatial variation in susceptibility has not been assessed as important in predicting likelihood of susceptibility.
Utilizing Staphylococcus aureus isolates obtained in outpatient settings from a nationwide provider of care, the Veterans Health Administration, and a local provider of care, the University of Iowa Hospitals and Clinics, standard, seasonal and spatial antibiograms were created for five commonly used antibiotic classes: cephalosporins, clindamycin, macrolides, tetracycline, trimethoprim/sulfamethoxazole.
A total of 338,681 S. aureus isolates obtained in VHA outpatient settings from 2010 to 2019 and 6,817 isolates obtained in UIHC outpatient settings from 2014 to 2019 were used to generate and test antibiograms. Logistic regression modeling determined the capacity of these antibiograms to predict isolate resistance to each antibiotic class. All models had low predictive capacity, with areas under the curve of < 0.7.
Standard antibiograms are poor in predicting S. aureus susceptibility to antibiotics often chosen by clinicians, and seasonal and spatial antibiograms do not provide an improved tool in anticipating non-susceptibility. These findings suggest that further refinements to antibiograms may be necessary to improve their utility in informing choice of effective antibiotic therapy.
虽然累积药敏报告和药敏图被推荐用于改善经验性治疗和抗生素管理,但药敏图的预测能力尚未得到很好的研究。虽然增强的药敏图已经显示出通过感染部位或患者年龄等特征更好地捕捉药敏谱的变化,但在预测药敏可能性方面,尚未将药敏的季节性或空间变化视为重要因素。
利用从全国医疗服务提供商退伍军人健康管理局(Veterans Health Administration)和当地医疗服务提供商爱荷华大学医院和诊所(University of Iowa Hospitals and Clinics)的门诊环境中获得的金黄色葡萄球菌(Staphylococcus aureus)分离株,为五种常用抗生素类别(头孢菌素、克林霉素、大环内酯类、四环素类、复方磺胺甲噁唑)创建了标准、季节性和空间药敏图。
总共使用了 2010 年至 2019 年期间从退伍军人健康管理局门诊环境中获得的 338681 株金黄色葡萄球菌分离株和 2014 年至 2019 年期间从爱荷华大学医院和诊所门诊环境中获得的 6817 株金黄色葡萄球菌分离株来生成和测试药敏图。逻辑回归模型确定了这些药敏图预测每种抗生素类别的分离株耐药性的能力。所有模型的预测能力都较低,曲线下面积<0.7。
标准药敏图在预测临床医生常选择的抗生素对金黄色葡萄球菌的敏感性方面表现不佳,季节性和空间药敏图并不能提供一种更好的工具来预测非敏感性。这些发现表明,可能需要进一步改进药敏图,以提高其在指导有效抗生素治疗选择方面的实用性。