Suppr超能文献

基于深度神经网络的胆囊息肉风险预测与分析。

Risk prediction and analysis of gallbladder polyps with deep neural network.

机构信息

Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, P.R. China.

School of Mechanical Engineering, Nantong University, Nantong, P.R. China.

出版信息

Comput Assist Surg (Abingdon). 2024 Dec;29(1):2331774. doi: 10.1080/24699322.2024.2331774. Epub 2024 Mar 23.

Abstract

The aim of this study is to analyze the risk factors associated with the development of adenomatous and malignant polyps in the gallbladder. Adenomatous polyps of the gallbladder are considered precancerous and have a high likelihood of progressing into malignancy. Preoperatively, distinguishing between benign gallbladder polyps, adenomatous polyps, and malignant polyps is challenging. Therefore, the objective is to develop a neural network model that utilizes these risk factors to accurately predict the nature of polyps. This predictive model can be employed to differentiate the nature of polyps before surgery, enhancing diagnostic accuracy. A retrospective study was done on patients who had cholecystectomy surgeries at the Department of Hepatobiliary Surgery of the Second People's Hospital of Shenzhen between January 2017 and December 2022. The patients' clinical characteristics, lab results, and ultrasonographic indices were examined. Using risk variables for the growth of adenomatous and malignant polyps in the gallbladder, a neural network model for predicting the kind of polyps will be created. A normalized confusion matrix, PR, and ROC curve were used to evaluate the performance of the model. In this comprehensive study, we meticulously analyzed a total of 287 cases of benign gallbladder polyps, 15 cases of adenomatous polyps, and 27 cases of malignant polyps. The data analysis revealed several significant findings. Specifically, hepatitis B core antibody (95% CI -0.237 to 0.061,  < 0.001), number of polyps (95% CI -0.214 to -0.052,  = 0.001), polyp size (95% CI 0.038 to 0.051,  < 0.001), wall thickness (95% CI 0.042 to 0.081,  < 0.001), and gallbladder size (95% CI 0.185 to 0.367,  < 0.001) emerged as independent predictors for gallbladder adenomatous polyps and malignant polyps. Based on these significant findings, we developed a predictive classification model for gallbladder polyps, represented as follows, Predictive classification model for GBPs = -0.149 * core antibody - 0.033 * number of polyps + 0.045 * polyp size + 0.061 * wall thickness + 0.276 * gallbladder size - 4.313. To assess the predictive efficiency of the model, we employed precision-recall (PR) and receiver operating characteristic (ROC) curves. The area under the curve (AUC) for the prediction model was 0.945 and 0.930, respectively, indicating excellent predictive capability. We determined that a polyp size of 10 mm served as the optimal cutoff value for diagnosing gallbladder adenoma, with a sensitivity of 81.5% and specificity of 60.0%. For the diagnosis of gallbladder cancer, the sensitivity and specificity were 81.5% and 92.5%, respectively. These findings highlight the potential of our predictive model and provide valuable insights into accurate diagnosis and risk assessment for gallbladder polyps. We identified several risk factors associated with the development of adenomatous and malignant polyps in the gallbladder, including hepatitis B core antibodies, polyp number, polyp size, wall thickness, and gallbladder size. To address the need for accurate prediction, we introduced a novel neural network learning algorithm. This algorithm utilizes the aforementioned risk factors to predict the nature of gallbladder polyps. By accurately identifying the nature of these polyps, our model can assist patients in making informed decisions regarding their treatment and management strategies. This innovative approach aims to improve patient outcomes and enhance the overall effectiveness of care.

摘要

本研究旨在分析与胆囊腺瘤性和恶性息肉发展相关的风险因素。胆囊腺瘤性息肉被认为是癌前病变,有很高的恶变可能性。术前,区分良性胆囊息肉、腺瘤性息肉和恶性息肉具有挑战性。因此,目的是开发一种神经网络模型,利用这些风险因素准确预测息肉的性质。这个预测模型可以在手术前用于区分息肉的性质,提高诊断准确性。我们对 2017 年 1 月至 2022 年 12 月期间在深圳市第二人民医院肝胆外科接受胆囊切除术的患者进行了回顾性研究。检查了患者的临床特征、实验室结果和超声指数。利用胆囊腺瘤性和恶性息肉生长的风险变量,建立预测息肉种类的神经网络模型。使用归一化混淆矩阵、PR 和 ROC 曲线评估模型的性能。在这项全面的研究中,我们仔细分析了总共 287 例良性胆囊息肉、15 例腺瘤性息肉和 27 例恶性息肉。数据分析显示了几个重要的发现。具体来说,乙型肝炎核心抗体(95%CI-0.237 至 0.061, <0.001)、息肉数量(95%CI-0.214 至-0.052, =0.001)、息肉大小(95%CI0.038 至 0.051, <0.001)、壁厚度(95%CI0.042 至 0.081, <0.001)和胆囊大小(95%CI0.185 至 0.367, <0.001)是胆囊腺瘤性息肉和恶性息肉的独立预测因素。基于这些重要发现,我们开发了一种用于胆囊息肉的预测分类模型,如下所示,GBP 预测分类模型= -0.149核心抗体-0.033息肉数量+0.045息肉大小+0.061壁厚度+0.276*胆囊大小-4.313。为了评估模型的预测效率,我们使用了精度-召回(PR)和接收者操作特征(ROC)曲线。预测模型的曲线下面积(AUC)分别为 0.945 和 0.930,表明具有出色的预测能力。我们确定息肉大小为 10mm 作为诊断胆囊腺瘤的最佳截断值,其灵敏度为 81.5%,特异性为 60.0%。对于胆囊癌的诊断,灵敏度和特异性分别为 81.5%和 92.5%。这些发现突出了我们预测模型的潜力,并为胆囊息肉的准确诊断和风险评估提供了有价值的见解。我们确定了几个与胆囊腺瘤性和恶性息肉发展相关的风险因素,包括乙型肝炎核心抗体、息肉数量、息肉大小、壁厚度和胆囊大小。为了满足准确预测的需求,我们引入了一种新的神经网络学习算法。该算法利用上述风险因素来预测胆囊息肉的性质。通过准确识别这些息肉的性质,我们的模型可以帮助患者做出关于其治疗和管理策略的明智决策。这种创新方法旨在改善患者的预后并提高整体护理效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验