Xing Qiaoxia, Zhang Jiasheng, Fang Yuqiang, Song Chaoyu, Zhao Tuoyu, Mou Yanlin, Wang Chong, Ma Junwei, Xie Yuangang, Huang Shenyang, Mu Lei, Lei Yuchen, Shi Wu, Huang Fuqiang, Yan Hugen
State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, and Department of Physics, Fudan University, 200433, Shanghai, China.
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China.
Nat Commun. 2024 Mar 23;15(1):2623. doi: 10.1038/s41467-024-46963-9.
In-plane anisotropic van der Waals materials have emerged as a natural platform for anisotropic polaritons. Extreme anisotropic polaritons with in-situ broadband tunability are of great significance for on-chip photonics, yet their application remains challenging. In this work, we experimentally characterize through Fourier transform infrared spectroscopy measurements a van der Waals plasmonic material, 2M-WS, capable of supporting intrinsic room-temperature in-plane anisotropic plasmons in the far and mid-infrared regimes. In contrast to the recently revealed natural hyperbolic plasmons in other anisotropic materials, 2M-WS supports canalized plasmons with flat isofrequency contours in the frequency range of ~ 3000-5000 cm. Furthermore, the anisotropic plasmons and the corresponding isofrequency contours can be reversibly tuned via in-situ ion-intercalation. The tunable anisotropic and canalization plasmons may open up further application perspectives in the field of uniaxial plasmonics, such as serving as active components in directional sensing, radiation manipulation, and polarization-dependent optical modulators.
面内各向异性范德华材料已成为各向异性极化激元的天然平台。具有原位宽带可调性的极端各向异性极化激元对片上光子学具有重要意义,但其应用仍具有挑战性。在这项工作中,我们通过傅里叶变换红外光谱测量对一种范德华等离子体材料2M-WS进行了实验表征,该材料能够在远红外和中红外波段支持本征室温面内各向异性等离子体。与最近在其他各向异性材料中发现的天然双曲线等离子体不同,2M-WS在~3000-5000 cm的频率范围内支持具有平坦等频线的通道化等离子体。此外,各向异性等离子体和相应的等频线可以通过原位离子插层进行可逆调节。可调谐的各向异性和通道化等离子体可能会在单轴等离子体领域开辟进一步的应用前景,例如用作方向传感、辐射操纵和偏振相关光调制器中的有源组件。