Suppr超能文献

深度学习在癫痫视频分析中的应用:综述

Deep learning approaches for seizure video analysis: A review.

机构信息

Imaging and Computer Vision Group, CSIRO Data61, Australia; SAIVT Laboratory, Queensland University of Technology, Australia.

Imaging and Computer Vision Group, CSIRO Data61, Australia.

出版信息

Epilepsy Behav. 2024 May;154:109735. doi: 10.1016/j.yebeh.2024.109735. Epub 2024 Mar 23.

Abstract

Seizure events can manifest as transient disruptions in the control of movements which may be organized in distinct behavioral sequences, accompanied or not by other observable features such as altered facial expressions. The analysis of these clinical signs, referred to as semiology, is subject to observer variations when specialists evaluate video-recorded events in the clinical setting. To enhance the accuracy and consistency of evaluations, computer-aided video analysis of seizures has emerged as a natural avenue. In the field of medical applications, deep learning and computer vision approaches have driven substantial advancements. Historically, these approaches have been used for disease detection, classification, and prediction using diagnostic data; however, there has been limited exploration of their application in evaluating video-based motion detection in the clinical epileptology setting. While vision-based technologies do not aim to replace clinical expertise, they can significantly contribute to medical decision-making and patient care by providing quantitative evidence and decision support. Behavior monitoring tools offer several advantages such as providing objective information, detecting challenging-to-observe events, reducing documentation efforts, and extending assessment capabilities to areas with limited expertise. The main applications of these could be (1) improved seizure detection methods; (2) refined semiology analysis for predicting seizure type and cerebral localization. In this paper, we detail the foundation technologies used in vision-based systems in the analysis of seizure videos, highlighting their success in semiology detection and analysis, focusing on work published in the last 7 years. We systematically present these methods and indicate how the adoption of deep learning for the analysis of video recordings of seizures could be approached. Additionally, we illustrate how existing technologies can be interconnected through an integrated system for video-based semiology analysis. Each module can be customized and improved by adapting more accurate and robust deep learning approaches as these evolve. Finally, we discuss challenges and research directions for future studies.

摘要

癫痫发作事件可表现为运动控制的短暂中断,这些运动可能以不同的行为序列进行组织,并伴有或不伴有其他可观察到的特征,如面部表情改变。这些临床体征的分析,即所谓的症状学,当专家在临床环境中评估视频记录的事件时,会受到观察者变异的影响。为了提高评估的准确性和一致性,癫痫发作的计算机辅助视频分析已经成为一种自然途径。在医学应用领域,深度学习和计算机视觉方法已经取得了重大进展。历史上,这些方法已被用于使用诊断数据进行疾病检测、分类和预测;然而,它们在评估临床癫痫学中基于视频的运动检测中的应用仍有很大的探索空间。虽然基于视觉的技术并不是为了取代临床专业知识,但它们可以通过提供定量证据和决策支持,为医学决策和患者护理做出重大贡献。行为监测工具具有几个优势,例如提供客观信息、检测难以观察到的事件、减少文档工作以及将评估能力扩展到专业知识有限的领域。这些工具的主要应用可能包括:(1)改进癫痫发作检测方法;(2)用于预测癫痫发作类型和大脑定位的更精细的症状学分析。在本文中,我们详细介绍了基于视觉的系统在癫痫发作视频分析中使用的基础技术,强调了它们在症状学检测和分析方面的成功,重点介绍了过去 7 年发表的工作。我们系统地呈现了这些方法,并指出了如何采用深度学习来分析癫痫发作的视频记录。此外,我们还说明了如何通过基于视频的半科学分析的集成系统来互联现有技术。每个模块都可以通过采用更准确和稳健的深度学习方法来定制和改进,随着这些方法的发展而不断改进。最后,我们讨论了未来研究的挑战和研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验