Suppr超能文献

理解患者行为:基于视觉的癫痫障碍分析。

Understanding Patients' Behavior: Vision-Based Analysis of Seizure Disorders.

出版信息

IEEE J Biomed Health Inform. 2019 Nov;23(6):2583-2591. doi: 10.1109/JBHI.2019.2895855. Epub 2019 Jan 29.

Abstract

A substantial proportion of patients with functional neurological disorders (FND) are being incorrectly diagnosed with epilepsy because their semiology resembles that of epileptic seizures (ES). Misdiagnosis may lead to unnecessary treatment and its associated complications. Diagnostic errors often result from an overreliance on specific clinical features. Furthermore, the lack of electrophysiological changes in patients with FND can also be seen in some forms of epilepsy, making diagnosis extremely challenging. Therefore, understanding semiology is an essential step for differentiating between ES and FND. Existing sensor-based and marker-based systems require physical contact with the body and are vulnerable to clinical situations such as patient positions, illumination changes, and motion discontinuities. Computer vision and deep learning are advancing to overcome these limitations encountered in the assessment of diseases and patient monitoring; however, they have not been investigated for seizure disorder scenarios. Here, we propose and compare two marker-free deep learning models, a landmark-based and a region-based model, both of which are capable of distinguishing between seizures from video recordings. We quantify semiology by using either a fusion of reference points and flow fields, or through the complete analysis of the body. Average leave-one-subject-out cross-validation accuracies for the landmark-based and region-based approaches of 68.1% and 79.6% in our dataset collected from 35 patients, reveal the benefit of video analytics to support automated identification of semiology in the challenging conditions of a hospital setting.

摘要

相当一部分功能性神经障碍(FND)患者被误诊为癫痫,因为他们的症状类似于癫痫发作(ES)。误诊可能导致不必要的治疗及其相关并发症。诊断错误通常源于过度依赖特定的临床特征。此外,FND 患者中缺乏电生理变化也可见于某些形式的癫痫,这使得诊断极具挑战性。因此,了解症状学是区分 ES 和 FND 的重要步骤。现有的基于传感器和基于标志物的系统需要与身体接触,并且容易受到患者体位、光照变化和运动不连续性等临床情况的影响。计算机视觉和深度学习正在不断发展,以克服疾病评估和患者监测中遇到的这些限制;然而,它们尚未被用于研究癫痫发作的场景。在这里,我们提出并比较了两种无标记深度学习模型,一种是基于地标点的模型,另一种是基于区域的模型,它们都能够从视频记录中区分癫痫发作。我们通过使用参考点和流场的融合或通过对整个身体进行完整分析来量化症状学。我们从 35 名患者的数据集进行的平均一次剔除一名受试者的交叉验证准确率表明,视频分析有助于支持在医院环境的挑战性条件下自动识别症状学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验