Department of Radiology, Stanford University, Stanford, CA, 94305, United States; Department of Medicine, University of Florida, Gainesville, FL, 32610, United States.
Department of Urology, Stanford University, Stanford, CA, 94305, United States.
Comput Biol Med. 2024 May;173:108318. doi: 10.1016/j.compbiomed.2024.108318. Epub 2024 Mar 19.
Image registration can map the ground truth extent of prostate cancer from histopathology images onto MRI, facilitating the development of machine learning methods for early prostate cancer detection. Here, we present RAdiology PatHology Image Alignment (RAPHIA), an end-to-end pipeline for efficient and accurate registration of MRI and histopathology images. RAPHIA automates several time-consuming manual steps in existing approaches including prostate segmentation, estimation of the rotation angle and horizontal flipping in histopathology images, and estimation of MRI-histopathology slice correspondences. By utilizing deep learning registration networks, RAPHIA substantially reduces computational time. Furthermore, RAPHIA obviates the need for a multimodal image similarity metric by transferring histopathology image representations to MRI image representations and vice versa. With the assistance of RAPHIA, novice users achieved expert-level performance, and their mean error in estimating histopathology rotation angle was reduced by 51% (12 degrees vs 8 degrees), their mean accuracy of estimating histopathology flipping was increased by 5% (95.3% vs 100%), and their mean error in estimating MRI-histopathology slice correspondences was reduced by 45% (1.12 slices vs 0.62 slices). When compared to a recent conventional registration approach and a deep learning registration approach, RAPHIA achieved better mapping of histopathology cancer labels, with an improved mean Dice coefficient of cancer regions outlined on MRI and the deformed histopathology (0.44 vs 0.48 vs 0.50), and a reduced mean per-case processing time (51 vs 11 vs 4.5 min). The improved performance by RAPHIA allows efficient processing of large datasets for the development of machine learning models for prostate cancer detection on MRI. Our code is publicly available at: https://github.com/pimed/RAPHIA.
图像配准可以将前列腺癌的组织病理学图像的真实范围映射到 MRI 上,从而促进用于早期前列腺癌检测的机器学习方法的发展。在这里,我们提出了 RAdiology PatHology Image Alignment(RAPHIA),这是一种用于 MRI 和组织病理学图像高效准确配准的端到端流水线。RAPHIA 自动化了现有方法中几个耗时的手动步骤,包括前列腺分割、组织病理学图像中旋转角度和水平翻转的估计,以及 MRI-组织病理学切片对应关系的估计。通过利用深度学习配准网络,RAPHIA 大大减少了计算时间。此外,RAPHIA 通过将组织病理学图像表示转移到 MRI 图像表示以及反之亦然,避免了对多模态图像相似性度量的需求。在 RAPHIA 的协助下,新手用户实现了专家级的性能,他们估计组织病理学旋转角度的平均误差减少了 51%(12 度对 8 度),估计组织病理学翻转的平均准确性提高了 5%(95.3%对 100%),估计 MRI-组织病理学切片对应关系的平均误差减少了 45%(1.12 片对 0.62 片)。与最近的传统配准方法和深度学习配准方法相比,RAPHIA 实现了更好的组织病理学癌症标签映射,MRI 上勾画的癌症区域和变形的组织病理学的平均 Dice 系数得到了提高(0.44 对 0.48 对 0.50),每个病例的平均处理时间减少了(51 对 11 对 4.5 分钟)。RAPHIA 的改进性能允许对大型数据集进行高效处理,以开发用于 MRI 上前列腺癌检测的机器学习模型。我们的代码可在 https://github.com/pimed/RAPHIA 上获得。