Suppr超能文献

使用深度学习在多参数磁共振成像上对前列腺癌前列腺外侵犯进行计算机检测

Computational Detection of Extraprostatic Extension of Prostate Cancer on Multiparametric MRI Using Deep Learning.

作者信息

Moroianu Ştefania L, Bhattacharya Indrani, Seetharaman Arun, Shao Wei, Kunder Christian A, Sharma Avishkar, Ghanouni Pejman, Fan Richard E, Sonn Geoffrey A, Rusu Mirabela

机构信息

Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.

Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Cancers (Basel). 2022 Jun 7;14(12):2821. doi: 10.3390/cancers14122821.

Abstract

The localization of extraprostatic extension (EPE), i.e., local spread of prostate cancer beyond the prostate capsular boundary, is important for risk stratification and surgical planning. However, the sensitivity of EPE detection by radiologists on MRI is low (57% on average). In this paper, we propose a method for computational detection of EPE on multiparametric MRI using deep learning. Ground truth labels of cancers and EPE were obtained in 123 patients (38 with EPE) by registering pre-surgical MRI with whole-mount digital histopathology images from radical prostatectomy. Our approach has two stages. First, we trained deep learning models using the MRI as input to generate cancer probability maps both inside and outside the prostate. Second, we built an image post-processing pipeline that generates predictions for EPE location based on the cancer probability maps and clinical knowledge. We used five-fold cross-validation to train our approach using data from 74 patients and tested it using data from an independent set of 49 patients. We compared two deep learning models for cancer detection: (i) UNet and (ii) the Correlated Signature Network for Indolent and Aggressive prostate cancer detection (CorrSigNIA). The best end-to-end model for EPE detection, which we call EPENet, was based on the CorrSigNIA cancer detection model. EPENet was successful at detecting cancers with extraprostatic extension, achieving a mean area under the receiver operator characteristic curve of 0.72 at the patient-level. On the test set, EPENet had 80.0% sensitivity and 28.2% specificity at the patient-level compared to 50.0% sensitivity and 76.9% specificity for the radiologists. To account for spatial location of predictions during evaluation, we also computed results at the sextant-level, where the prostate was divided into sextants according to standard systematic 12-core biopsy procedure. At the sextant-level, EPENet achieved mean sensitivity 61.1% and mean specificity 58.3%. Our approach has the potential to provide the location of extraprostatic extension using MRI alone, thus serving as an independent diagnostic aid to radiologists and facilitating treatment planning.

摘要

前列腺外扩展(EPE)的定位,即前列腺癌超出前列腺包膜边界的局部扩散,对于风险分层和手术规划至关重要。然而,放射科医生在MRI上检测EPE的敏感性较低(平均为57%)。在本文中,我们提出了一种使用深度学习在多参数MRI上进行EPE计算检测的方法。通过将术前MRI与根治性前列腺切除术后的全层数字组织病理学图像配准,在123例患者(38例有EPE)中获得了癌症和EPE的真实标签。我们的方法有两个阶段。首先,我们使用MRI作为输入训练深度学习模型,以生成前列腺内外的癌症概率图。其次,我们构建了一个图像后处理管道,该管道基于癌症概率图和临床知识生成EPE位置的预测。我们使用五折交叉验证,使用来自74例患者的数据训练我们的方法,并使用来自独立的49例患者数据集对其进行测试。我们比较了两种用于癌症检测的深度学习模型:(i)UNet和(ii)用于惰性和侵袭性前列腺癌检测的相关特征网络(CorrSigNIA)。用于EPE检测的最佳端到端模型,我们称之为EPENet,是基于CorrSigNIA癌症检测模型。EPENet成功检测出有前列腺外扩展的癌症,在患者水平上实现了受试者操作特征曲线下的平均面积为0.72。在测试集上,与放射科医生的50.0%敏感性和76.9%特异性相比,EPENet在患者水平上具有80.0%的敏感性和28.2%的特异性。为了在评估期间考虑预测的空间位置,我们还在六分区水平上计算了结果,其中根据标准的系统12芯活检程序将前列腺分为六分区。在六分区水平上,EPENet实现了平均敏感性61.1%和平均特异性58.3%。我们的方法有可能仅使用MRI提供前列腺外扩展的位置,从而作为放射科医生的独立诊断辅助手段并促进治疗规划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcac/9220816/f22dbff7584a/cancers-14-02821-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验