Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany; Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Hyderabad, India.
Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany; Carrera de Médico Cirujano y Unidad de Biomedicina (UBIMED), FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico.
J Lipid Res. 2024 Jun;65(6):100535. doi: 10.1016/j.jlr.2024.100535. Epub 2024 Mar 24.
Glycerophospholipids have emerged as a significant contributor to the intracellular growth of pathogenic protist Toxoplasma gondii. Phosphatidylserine (PtdSer) is one such lipid, attributed to the locomotion and motility-dependent invasion and egress events in its acutely infectious tachyzoite stage. However, the de novo synthesis of PtdSer and the importance of the pathway in tachyzoites remain poorly understood. We show that a base-exchange-type PtdSer synthase (PSS) located in the parasite's endoplasmic reticulum produces PtdSer, which is rapidly converted to phosphatidylethanolamine (PtdEtn) by PtdSer decarboxylase (PSD) activity. The PSS-PSD pathway enables the synthesis of several lipid species, including PtdSer (16:0/18:1) and PtdEtn (18:2/20:4, 18:1/18:2 and 18:2/22:5). The PSS-depleted strain exhibited a lower abundance of the major ester-linked PtdEtn species and concurrent accrual of host-derived ether-PtdEtn species. Most phosphatidylthreonine (PtdThr) species-an exclusive natural analog of PtdSer, also made in the endoplasmic reticulum-were repressed. PtdSer species, however, remained largely unaltered, likely due to the serine-exchange reaction of PtdThr synthase in favor of PtdSer upon PSS depletion. Not least, the loss of PSS abrogated the lytic cycle of tachyzoites, impairing the cell division, motility, and egress. In a nutshell, our data demonstrate a critical role of PSS in the biogenesis of PtdSer and PtdEtn species and its physiologically essential repurposing for the asexual reproduction of a clinically relevant intracellular pathogen.
甘油磷脂已成为致病性原生动物弓形虫细胞内生长的重要贡献者。磷脂酰丝氨酸(PtdSer)就是这样一种脂质,它与速殖子阶段的运动和运动依赖性入侵和逸出事件有关。然而,PtdSer 的从头合成及其在速殖子中的重要性仍知之甚少。我们表明,位于寄生虫内质网中的碱基交换型 PtdSer 合酶(PSS)产生 PtdSer,PtdSer 迅速被 PtdSer 脱羧酶(PSD)活性转化为磷脂乙醇胺(PtdEtn)。PSS-PSD 途径能够合成几种脂质,包括 PtdSer(16:0/18:1)和 PtdEtn(18:2/20:4、18:1/18:2 和 18:2/22:5)。PSS 耗尽株表现出主要酯键连接的 PtdEtn 物种的丰度降低,同时积累了宿主衍生的醚-PtdEtn 物种。大多数磷脂酰苏氨酸(PtdThr)物种-一种 PtdSer 的独特天然类似物,也在内质网中合成-受到抑制。然而,PtdSer 物种基本上没有改变,这可能是由于 PSS 耗尽时 PtdThr 合酶的丝氨酸交换反应有利于 PtdSer。最重要的是,PSS 的缺失消除了速殖子的裂解周期,损害了细胞分裂、运动和逸出。简而言之,我们的数据表明 PSS 在 PtdSer 和 PtdEtn 物种的生物发生中起关键作用,并且其在生理上对临床相关细胞内病原体的无性繁殖具有重要的重新利用作用。