Chen Kai, Huang Xiyu, Distler Ute, Tenzer Stefan, Günay-Esiyok Özlem, Gupta Nishith
Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany.
Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany.
Comput Struct Biotechnol J. 2023 Feb 18;21:1893-1906. doi: 10.1016/j.csbj.2023.02.032. eCollection 2023.
The membrane asymmetry regulated by P4-ATPases is crucial for the functioning of eukaryotic cells. The underlying spatial translocation or flipping of specific lipids is usually assured by respective P4-ATPases coupled to conforming non-catalytic subunits. Our previous work has identified five P4-ATPases (P4-ATPase1-5) and three non-catalytic partner proteins (Lem1-3) in the intracellular protozoan pathogen, . However, their flipping activity, physiological relevance and functional coupling remain unknown. Herein, we demonstrate that P4-ATPase1 and Lem1 work together to translocate phosphatidylserine (PtdSer) during the lytic cycle of . Both proteins localize in the plasma membrane at the invasive (apical) end of its acutely-infectious tachyzoite stage. The genetic knockout of P4-ATPase1 and conditional depletion of Lem1 in tachyzoites severely disrupt the asexual reproduction and translocation of PtdSer across the plasma membrane. Moreover, the phenotypic analysis of individual mutants revealed a requirement of lipid flipping for the motility, egress and invasion of tachyzoites. Not least, the proximity-dependent biotinylation and reciprocal immunoprecipitation assays demonstrated the physical interaction of P4-ATPase1 and Lem1. Our findings disclose the mechanism and significance of PtdSer flipping during the lytic cycle and identify the P4-ATPase1-Lem1 heterocomplex as a potential drug target in .
由P4 - ATP酶调节的膜不对称性对于真核细胞的功能至关重要。特定脂质的潜在空间易位或翻转通常由与相应非催化亚基偶联的各自P4 - ATP酶来保证。我们之前的工作已经在细胞内原生动物病原体中鉴定出五种P4 - ATP酶(P4 - ATP酶1 - 5)和三种非催化伴侣蛋白(Lem1 - 3)。然而,它们的翻转活性、生理相关性和功能偶联仍然未知。在此,我们证明P4 - ATP酶1和Lem1在其裂解周期中共同作用来转运磷脂酰丝氨酸(PtdSer)。这两种蛋白都定位于其急性感染速殖子阶段侵入性(顶端)末端的质膜中。速殖子中P4 - ATP酶1的基因敲除和Lem1的条件性缺失严重破坏了PtdSer跨质膜的无性繁殖和转运。此外,对单个突变体的表型分析揭示了脂质翻转对于速殖子的运动性、逸出和侵入的必要性。不仅如此,邻近依赖性生物素化和相互免疫沉淀试验证明了P4 - ATP酶1和Lem1之间的物理相互作用。我们的研究结果揭示了裂解周期中PtdSer翻转的机制和意义,并确定P4 - ATP酶1 - Lem1异源复合物为潜在的药物靶点。