Karri Roja L, Bojji Manasa, Rudraraju Amrutha, Mohammad Abdul Sadik, Kosuru Vamseedhar, Kalisipudi Sandeep
Oral and Maxillofacial Pathology, GSL Dental College and Hospital, Rajahmundry, IND.
Oral and Maxillofacial Pathology, Malla Reddy Dental College for Women, Hyderabad, IND.
Cureus. 2024 Feb 22;16(2):e54730. doi: 10.7759/cureus.54730. eCollection 2024 Feb.
Background Adenoid cystic carcinoma (ACC) poses clinical challenges with its unique histology and potential for perineural invasion, recurrence, and distant metastases. Recent genomic advancements have unveiled key genetic alterations in ACC, offering insights into its pathogenesis. Aim This study aims to unravel the intricate molecular landscape of ACC through a comprehensive analysis of gene expression patterns. By integrating data from multiple microarray datasets, the study explores differentially expressed genes (DEGs), their functional enrichment, protein-protein interactions (PPI), hub genes, microRNA (miRNA) involvement, transcription factors, and potential drug-gene interactions. Methods Three microarray datasets (GSE88804, GSE153002, and GSE36820) related to ACC were selected from the Gene Expression Omnibus (GEO) repository. DEGs were identified using GEO2R and further analyzed for commonalities and differences. Functional enrichment analysis, including Gene Set Enrichment Analysis (GSEA), provided insights into biological processes, cellular components, molecular functions, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with ACC. PPI networks and hub genes were identified using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) (STRING Consortium, Lausanne, Switzerland) database and Cytoscape (Cytoscape Consortium, California, United States). The study also explored miRNAs, transcription factors, and potential drug-gene interactions. Results The integrated analysis revealed 339 common upregulated and 643 downregulated DEGs in ACC. Functional and pathway enrichment analyses unveiled the involvement of these genes in critical cellular processes, signaling cascades, and pathways. The PPI network, comprising 904 nodes and 4139 edges, highlighted the complexity of interactions. Hub genes, including KIF11, BUB1, and DLGAP5, were identified, shedding light on their pivotal roles in cell cycle regulation. The study also identified miRNAs (e.g., hsa-mir-7-5p and hsa-mir-138-5p) and transcription factors (e.g., E2F1 and TP53) associated with ACC. Drug-gene interactions have identified potential therapeutic options, including amsacrine and rucaparib. Conclusions The ACC gene expression highlights a nuanced molecular landscape, identifying pivotal hub genes such as KIF11 and CDK1 as potential therapeutic targets for ACC, given their roles in cell cycle progression. The dysregulation of microRNAs and transcription factors adds complexity to ACC's molecular profile. Exploration of drug-gene interactions reveals promising therapeutic strategies, involving FDA-approved drugs such as amsacrine and rucaparib, providing avenues for personalized interventions.
腺样囊性癌(ACC)因其独特的组织学特征以及具有神经周围浸润、复发和远处转移的可能性,给临床带来了挑战。近期的基因组学进展揭示了ACC中的关键基因改变,为其发病机制提供了见解。
本研究旨在通过对基因表达模式的全面分析,揭示ACC复杂的分子格局。通过整合来自多个微阵列数据集的数据,该研究探索了差异表达基因(DEGs)、它们的功能富集、蛋白质-蛋白质相互作用(PPI)、枢纽基因、微小RNA(miRNA)的参与情况、转录因子以及潜在的药物-基因相互作用。
从基因表达综合数据库(GEO)中选择了三个与ACC相关的微阵列数据集(GSE88804、GSE153002和GSE36820)。使用GEO2R识别DEGs,并进一步分析其共性和差异。功能富集分析,包括基因集富集分析(GSEA),提供了与ACC相关的生物学过程、细胞成分、分子功能以及京都基因与基因组百科全书(KEGG)通路的见解。使用检索相互作用基因/蛋白质的搜索工具(STRING)(瑞士洛桑的STRING联盟)数据库和Cytoscape(美国加利福尼亚的Cytoscape联盟)识别PPI网络和枢纽基因。该研究还探索了miRNA、转录因子以及潜在的药物-基因相互作用。
综合分析揭示了ACC中339个共同上调和643个下调的DEGs。功能和通路富集分析揭示了这些基因参与关键的细胞过程、信号级联反应和通路。由904个节点和4139条边组成的PPI网络突出了相互作用的复杂性。确定了枢纽基因,包括KIF11、BUB1和DLGAP5,揭示了它们在细胞周期调控中的关键作用。该研究还确定了与ACC相关的miRNA(例如,hsa-mir-7-5p和hsa-mir-138-5p)和转录因子(例如,E2F1和TP53)。药物-基因相互作用确定了潜在的治疗选择,包括安吖啶和鲁卡帕尼。
ACC的基因表达突出了一个细微的分子格局,鉴于其在细胞周期进程中的作用,确定了关键的枢纽基因如KIF11和CDK1作为ACC的潜在治疗靶点。miRNA和转录因子的失调增加了ACC分子谱的复杂性。对药物-基因相互作用的探索揭示了有前景的治疗策略,涉及美国食品药品监督管理局(FDA)批准的药物如安吖啶和鲁卡帕尼,为个性化干预提供了途径。