Rogalski Mary A, Baker Elizabeth S, Benadon Clara M, Tatgenhorst Christoph, Nichols Brady R
Bowdoin College Brunswick Maine USA.
Evol Appl. 2024 Mar 22;17(3):e13668. doi: 10.1111/eva.13668. eCollection 2024 Mar.
The increasing application of road deicing agents (e.g., NaCl) has caused widespread salinization of freshwater environments. Chronic exposure to toxic NaCl levels can impact freshwater biota at genome to ecosystem scales, yet the degree of harm caused by road salt pollution is likely to vary among habitats and populations. The background ion chemistry of freshwater environments may strongly impact NaCl toxicity, with greater harm occurring in ion-poor, soft water conditions. In addition, populations exposed to salinization may evolve increased NaCl tolerance. Notably, if organisms are adapted to the water chemistry of their natal environment, toxicity responses may also vary among populations in a given test medium. We examined the potential for this evolutionary and environmental context to interact in shaping NaCl toxicity with a pair of laboratory reciprocal transplant toxicity experiments, using natural populations of the water flea collected from three lakes that vary in ion availability and composition. We observed a strong effect of the lake water environment on NaCl toxicity in both trials. NaCl caused a much greater decline in reproduction and in lake water from a low-ion/calcium-poor environment (20 μS/cm specific conductance; 1.7 mg/L Ca) compared with water from both a Ca-rich lake (55 μS/cm; 7.2 mg/L Ca) and an ion-rich coastal lake (420 μS/cm; 3.4 mg/L Ca). from this coastal lake were most robust to the effects of NaCl on reproduction and . A significant interaction between the population and lake water environment shaped survival in both trials, suggesting that local adaptation to the test waters used may have contributed to toxicity responses. Our findings that the lake water environment, adaptation to that environment, and adaptation to a contaminant of interest may shape toxicity demonstrate the importance of considering environmental and biological complexity in mitigating pollution impacts.
道路除冰剂(如氯化钠)的使用日益增加,已导致淡水环境普遍盐碱化。长期暴露于有毒的氯化钠水平会在从基因组到生态系统的尺度上影响淡水生物群落,然而道路盐分污染造成的危害程度可能因栖息地和种群而异。淡水环境的背景离子化学性质可能会强烈影响氯化钠的毒性,在离子贫乏的软水条件下危害更大。此外,暴露于盐碱化环境中的种群可能会进化出更高的氯化钠耐受性。值得注意的是,如果生物体适应其原生环境的水化学性质,那么在给定的测试介质中,不同种群的毒性反应也可能会有所不同。我们通过一对实验室相互移植毒性实验,利用从三个离子有效性和组成不同的湖泊中采集的水蚤自然种群,研究了这种进化和环境背景在塑造氯化钠毒性方面相互作用的可能性。在两项试验中,我们都观察到湖水环境对氯化钠毒性有很强的影响。与富含钙的湖泊(电导率55μS/cm;钙含量7.2mg/L)和离子丰富的沿海湖泊(电导率420μS/cm;钙含量3.4mg/L)的水相比,来自低离子/贫钙环境(电导率20μS/cm;钙含量1.7mg/L)的湖水中,氯化钠导致的繁殖率下降幅度要大得多。来自这个沿海湖泊的水蚤对氯化钠对繁殖和[此处原文缺失部分内容]的影响最具抵抗力。在两项试验中,种群与湖水环境之间的显著相互作用影响了存活率,这表明对所用测试水域的局部适应可能导致了毒性反应。我们的研究结果表明,湖水环境、对该环境的适应以及对相关污染物的适应可能会影响毒性,这证明了在减轻污染影响时考虑环境和生物复杂性的重要性。