Suppr超能文献

利用偏振测量减轻高光谱成像中光照、叶片和视角的依赖性

Mitigating Illumination-, Leaf-, and View-Angle Dependencies in Hyperspectral Imaging Using Polarimetry.

作者信息

Krafft Daniel, Scarboro Clifton G, Hsieh William, Doherty Colleen, Balint-Kurti Peter, Kudenov Michael

机构信息

Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA.

NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA.

出版信息

Plant Phenomics. 2024 Mar 22;6:0157. doi: 10.34133/plantphenomics.0157. eCollection 2024.

Abstract

Automation of plant phenotyping using data from high-dimensional imaging sensors is on the forefront of agricultural research for its potential to improve seasonal yield by monitoring crop health and accelerating breeding programs. A common challenge when capturing images in the field relates to the spectral reflection of sunlight (glare) from crop leaves that, at certain solar incidences and sensor viewing angles, presents unwanted signals. The research presented here involves the convergence of 2 parallel projects to develop a facile algorithm that can use polarization data to decouple light reflected from the surface of the leaves and light scattered from the leaf's tissue. The first project is a mast-mounted hyperspectral imaging polarimeter (HIP) that can image a maize field across multiple diurnal cycles throughout a growing season. The second project is a multistatic fiber-based Mueller matrix bidirectional reflectance distribution function (mmBRDF) instrument which measures the polarized light-scattering behavior of individual maize leaves. The mmBRDF data was fitted to an existing model, which outputs parameters that were used to run simulations. The simulated data were then used to train a shallow neural network which works by comparing unpolarized 2-band vegetation index (VI) with linearly polarized data from the low-reflectivity bands of the VI. Using GNDVI and red-edge reflection ratio we saw an improvement of an order of magnitude or more in the mean error () and a reduction spanning 1.5 to 2.7 in their standard deviation () after applying the correction network on the HIP sensor data.

摘要

利用来自高维成像传感器的数据实现植物表型分析自动化,因其有潜力通过监测作物健康状况和加速育种计划来提高季节性产量,所以处于农业研究的前沿。在田间拍摄图像时,一个常见的挑战与作物叶片对太阳光(眩光)的光谱反射有关,在某些太阳入射角和传感器视角下,这种反射会产生不需要的信号。本文介绍的研究涉及两个并行项目的融合,以开发一种简便的算法,该算法可以利用偏振数据来分离从叶片表面反射的光和从叶片组织散射的光。第一个项目是一个安装在桅杆上的高光谱成像偏振计(HIP),它可以在整个生长季节的多个昼夜周期内对玉米田进行成像。第二个项目是一个基于多静态光纤的穆勒矩阵双向反射分布函数(mmBRDF)仪器,它测量单个玉米叶片的偏振光散射行为。将mmBRDF数据拟合到一个现有模型,该模型输出用于运行模拟的参数。然后,利用模拟数据训练一个浅层神经网络,该网络通过将非偏振的双波段植被指数(VI)与来自VI低反射率波段的线性偏振数据进行比较来工作。在对HIP传感器数据应用校正网络后,使用归一化差值植被指数(GNDVI)和红边反射率,我们发现平均误差()提高了一个数量级或更多,标准差()降低了1.5至2.7。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c99/10959007/a9197c4c4660/plantphenomics.0157.fig.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验