Sullivan Liam M, Creveling Suzi, Cowan Marissa, Gabert Lukas, Lenzi Tommaso
Department of Mechanical Engineering and Robotics Center at the University of Utah.
Rocky Mountain Center for Occupational and Environmental Health.
Rep U S. 2023 Oct;2023:2128-2133. doi: 10.1109/iros55552.2023.10342504. Epub 2023 Dec 13.
Ambulation in everyday life requires walking at variable speeds, variable inclines, and variable terrains. Powered prostheses aim to provide this adaptability through control of the actuated joints. Some powered prosthesis controllers can adapt to discrete changes in speed and incline but require manual tuning to determine the control parameters, leading to poor clinical viability. Other data-driven controllers can continuously adapt to changes in speed and incline but do so by imposing the same non-amputee gait patterns for all amputee subjects, which does not consider subjective preferences and differing clinical needs of users. Here, we present a controller for powered knee and ankle prostheses that can continuously adapt to different walking speeds, inclines, and uneven terrains without enforcing a specific prosthesis position, impedance, or torque. A virtual biarticular muscle connection determines the knee flexion torque, which changes with both speed and slope. Adaptation to inclines and uneven terrains is based solely on the global shank orientation. Continuously variable damping allows for speed adaptation. Minimum-jerk programming defines the prosthesis swing trajectory at variable cadences. Experiments with one individual with an above-knee amputation suggest that the proposed controller can effectively adapt to different walking speeds, inclines, and rough terrains.
日常生活中的行走需要在不同速度、不同坡度和不同地形上行走。动力假肢旨在通过控制驱动关节来提供这种适应性。一些动力假肢控制器可以适应速度和坡度的离散变化,但需要手动调整来确定控制参数,导致临床可行性较差。其他数据驱动的控制器可以持续适应速度和坡度的变化,但通过为所有截肢者施加相同的非截肢者步态模式来实现,这没有考虑用户的主观偏好和不同的临床需求。在此,我们提出一种用于动力膝关节和踝关节假肢的控制器,它可以持续适应不同的行走速度、坡度和不平坦地形,而无需强制特定的假肢位置、阻抗或扭矩。虚拟双关节肌肉连接确定膝关节屈曲扭矩,该扭矩随速度和坡度而变化。对坡度和不平坦地形的适应仅基于小腿的全局方向。连续可变阻尼允许速度适应。最小加加速度编程定义了可变步频下的假肢摆动轨迹。对一名膝上截肢者的实验表明,所提出的控制器可以有效地适应不同的行走速度、坡度和粗糙地形。