Best T Kevin, Welker Cara Gonzalez, Rouse Elliott J, Gregg Robert D
Department of Electrical Engineering and Computer Science and the Robotics Institute, University of Michigan, Ann Arbor, MI 48109.
Department of Mechanical Engineering and the Robotics Institute, University of Michigan, Ann Arbor, MI 48109.
IEEE Trans Robot. 2023 Jun;39(3):2151-2169. doi: 10.1109/tro.2022.3226887. Epub 2023 Jan 13.
Most impedance-based walking controllers for powered knee-ankle prostheses use a finite state machine with dozens of user-specific parameters that require manual tuning by technical experts. These parameters are only appropriate near the task (., walking speed and incline) at which they were tuned, necessitating many different parameter sets for variable-task walking. In contrast, this paper presents a data-driven, phase-based controller for variable-task walking that uses continuously-variable impedance control during stance and kinematic control during swing to enable biomimetic locomotion. After generating a data-driven model of variable joint impedance with convex optimization, we implement a novel task-invariant phase variable and real-time estimates of speed and incline to enable autonomous task adaptation. Experiments with above-knee amputee participants (N=2) show that our data-driven controller 1) features highly-linear phase estimates and accurate task estimates, 2) produces biomimetic kinematic and kinetic trends as task varies, leading to low errors relative to able-bodied references, and 3) produces biomimetic joint work and cadence trends as task varies. We show that the presented controller meets and often exceeds the performance of a benchmark finite state machine controller for our two participants, without requiring manual impedance tuning.
大多数用于动力膝盖-脚踝假肢的基于阻抗的步行控制器使用有限状态机,该有限状态机具有数十个特定于用户的参数,需要技术专家进行手动调整。这些参数仅在调整它们时所针对的任务(如步行速度和坡度)附近适用,因此对于可变任务步行需要许多不同的参数集。相比之下,本文提出了一种用于可变任务步行的数据驱动的基于相位的控制器,该控制器在站立阶段使用连续可变阻抗控制,在摆动阶段使用运动学控制,以实现仿生运动。通过凸优化生成可变关节阻抗的数据驱动模型后,我们实现了一种新颖的任务不变相位变量以及速度和坡度的实时估计,以实现自主任务适应。对膝上截肢参与者(N = 2)进行的实验表明,我们的数据驱动控制器:1)具有高度线性的相位估计和准确的任务估计;2)随着任务变化产生仿生运动学和动力学趋势,相对于健全人参考产生的误差较低;3)随着任务变化产生仿生关节功和步频趋势。我们表明,所提出的控制器在我们的两名参与者中达到并经常超过基准有限状态机控制器的性能,而无需手动调整阻抗。