Suppr超能文献

关于体心立方-C40碳的结构、力学和电子性质的理论见解。

Theoretical insights into the structural, mechanical, and electronic properties of bcc-C40 carbon.

作者信息

Ma Ying, Ying Pan, Luo Kun, Wu Yingju, Li Baozhong, He Julong

机构信息

Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.

National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.

出版信息

Phys Chem Chem Phys. 2024 Apr 3;26(14):10932-10939. doi: 10.1039/d4cp00149d.

Abstract

Novel materials displaying multiple exceptional properties are the backbone of the advancement of various industries. In the field of carbon materials, the combination of different properties has been extensively developed to satisfy diverse application scenarios, for instance, conductivity paired with exceptional hardness, outstanding toughness coupled with super-hardness, or heat resistance combined with super-hardness. In this work, a new carbon allotrope, bcc-C40 carbon, was predicted and investigated using first-principles calculations based on density functional theory. The allotrope exhibits unique structural features, including a combination of sp hybridized diatomic carbon and four-fold carbon chains. The mechanical and dynamic stability of bcc-C40 carbon has been demonstrated by its elastic constants and phonon spectra. Additionally, bcc-C40 carbon exhibits remarkable mechanical properties, such as zero homogeneous Poisson's ratio, superhardness with a value of 58 GPa, and stress-adaptive toughening. The analysis of the electronic properties demonstrates that bcc-C40 carbon is a semiconductor with an indirect band gap of 3.255 eV within the HSE06 functional, which increases with the increase in pressure. At a pressure of 150 GPa, bcc-C40 carbon transforms into a direct band gap material. These findings suggest the prospective use of bcc-C40 carbon as a superhard material and a novel semiconductor.

摘要

具有多种优异性能的新型材料是各行业发展的支柱。在碳材料领域,为满足不同的应用场景,人们广泛开发了不同性能的组合,例如,导电性与极高硬度相结合、出色韧性与超硬性能相结合,或耐热性与超硬性能相结合。在这项工作中,基于密度泛函理论,采用第一性原理计算预测并研究了一种新的碳同素异形体——体心立方-C40碳。该同素异形体具有独特的结构特征,包括sp杂化双原子碳和四重碳链的组合。体心立方-C40碳的弹性常数和声子谱证明了其力学和动力学稳定性。此外,体心立方-C40碳还具有显著的力学性能,如零均匀泊松比、58 GPa的超硬性能以及应力自适应增韧。电子性质分析表明,在HSE06泛函下,体心立方-C40碳是一种间接带隙为3.255 eV的半导体,其带隙随压力增加而增大。在150 GPa的压力下,体心立方-C40碳转变为直接带隙材料。这些发现表明体心立方-C40碳有望用作超硬材料和新型半导体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验