Zhang Jiaji, Benavides-Riveros Carlos L, Chen Lipeng
Zhejiang Laboratory, Hangzhou 311100, China.
Pitaevskii BEC Center, CNR-INO, and Dipartimento di Fisica, Universitá di Trento, I-38123 Trento, Italy.
J Phys Chem Lett. 2024 Apr 4;15(13):3603-3610. doi: 10.1021/acs.jpclett.4c00598. Epub 2024 Mar 25.
The accurate (or even approximate) solution of the equations that govern the dynamics of dissipative quantum systems remains a challenging task in quantum science. While several algorithms have been designed to solve those equations with different degrees of flexibility, they rely mainly on highly expensive iterative schemes. Most recently, deep neural networks have been used for quantum dynamics, but current architectures are highly dependent on the physics of the particular system and usually limited to population dynamics. Here we introduce an artificial-intelligence-based surrogate model that solves dissipative quantum dynamics by parametrizing quantum propagators as Fourier neural operators, which we train using both data set and physics-informed loss functions. Compared with conventional algorithms, our quantum neural propagator avoids time-consuming iterations and provides a universal superoperator that can be used to evolve any initial quantum state for arbitrarily long times. To illustrate the wide applicability of the approach, we employ our quantum neural propagator to compute the population dynamics and time-correlation functions of the Fenna-Matthews-Olson complex.
求解描述耗散量子系统动力学的方程的精确(甚至近似)解,仍然是量子科学中的一项具有挑战性的任务。虽然已经设计了几种算法来以不同程度的灵活性求解这些方程,但它们主要依赖于成本高昂的迭代方案。最近,深度神经网络已被用于量子动力学,但目前的架构高度依赖于特定系统的物理特性,并且通常仅限于布居动力学。在这里,我们引入了一种基于人工智能的替代模型,该模型通过将量子传播子参数化为傅里叶神经算子来求解耗散量子动力学,我们使用数据集和物理信息损失函数对其进行训练。与传统算法相比,我们的量子神经传播子避免了耗时的迭代,并提供了一个通用的超算子,可用于长时间演化任意初始量子态。为了说明该方法的广泛适用性,我们使用我们的量子神经传播子来计算费纳 - 马修斯 - 奥尔森复合物的布居动力学和时间关联函数。