Suppr超能文献

基于自适应加权损失函数的用于哈密顿-雅可比方程的物理信息神经网络。

Physics-informed neural networks based on adaptive weighted loss functions for Hamilton-Jacobi equations.

作者信息

Liu Youqiong, Cai Li, Chen Yaping, Wang Bin

机构信息

School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, China.

School of Mathematics and Statistics, Xinyang Nomal University, Xin'yang 464000, China.

出版信息

Math Biosci Eng. 2022 Sep 5;19(12):12866-12896. doi: 10.3934/mbe.2022601.

Abstract

Physics-informed neural networks (PINN) have lately become a research hotspot in the interdisciplinary field of machine learning and computational mathematics thanks to the flexibility in tackling forward and inverse problems. In this work, we explore the generality of the PINN training algorithm for solving Hamilton-Jacobi equations, and propose physics-informed neural networks based on adaptive weighted loss functions (AW-PINN) that is trained to solve unsupervised learning tasks with fewer training data while physical information constraints are imposed during the training process. To balance the contributions from different constrains automatically, the AW-PINN training algorithm adaptively update the weight coefficients of different loss terms by using the logarithmic mean to avoid additional hyperparameter. Moreover, the proposed AW-PINN algorithm imposes the periodicity requirement on the boundary condition and its gradient. The fully connected feedforward neural networks are considered and the optimizing procedure is taken as the Adam optimizer for some steps followed by the L-BFGS-B optimizer. The series of numerical experiments illustrate that the proposed algorithm effectively achieves noticeable improvements in predictive accuracy and the convergence rate of the total training error, and can approximate the solution even when the Hamiltonian is nonconvex. A comparison between the proposed algorithm and the original PINN algorithm for Hamilton-Jacobi equations indicates that the proposed AW-PINN algorithm can train the solutions more accurately with fewer iterations.

摘要

基于物理信息的神经网络(PINN)由于在解决正问题和逆问题方面具有灵活性,近来已成为机器学习和计算数学交叉领域的一个研究热点。在这项工作中,我们探究了PINN训练算法在求解哈密顿 - 雅可比方程方面的通用性,并提出了基于自适应加权损失函数的物理信息神经网络(AW - PINN),该网络在训练过程中施加物理信息约束的同时,经过训练以用更少的训练数据解决无监督学习任务。为了自动平衡来自不同约束的贡献,AW - PINN训练算法通过使用对数均值自适应地更新不同损失项的权重系数,以避免额外的超参数。此外,所提出的AW - PINN算法对边界条件及其梯度施加周期性要求。考虑了全连接前馈神经网络,并采用Adam优化器进行若干步优化,随后采用L - BFGS - B优化器。一系列数值实验表明,所提出的算法在预测精度和总训练误差的收敛速度方面有效地实现了显著改进,并且即使哈密顿量是非凸的也能逼近解。所提出的算法与用于哈密顿 - 雅可比方程的原始PINN算法之间的比较表明,所提出的AW - PINN算法能够以更少的迭代次数更准确地训练解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验