Suppr超能文献

测验分量表的诊断分类模型:方法与理论。

Diagnostic Classification Models for Testlets: Methods and Theory.

机构信息

Beijing Normal University, Beijing, China.

Fudan University, Shanghai, China.

出版信息

Psychometrika. 2024 Sep;89(3):851-876. doi: 10.1007/s11336-024-09962-9. Epub 2024 Mar 26.

Abstract

Diagnostic classification models (DCMs) have seen wide applications in educational and psychological measurement, especially in formative assessment. DCMs in the presence of testlets have been studied in recent literature. A key ingredient in the statistical modeling and analysis of testlet-based DCMs is the superposition of two latent structures, the attribute profile and the testlet effect. This paper extends the standard testlet DINA (T-DINA) model to accommodate the potential correlation between the two latent structures. Model identifiability is studied and a set of sufficient conditions are proposed. As a byproduct, the identifiability of the standard T-DINA is also established. The proposed model is applied to a dataset from the 2015 Programme for International Student Assessment. Comparisons are made with DINA and T-DINA, showing that there is substantial improvement in terms of the goodness of fit. Simulations are conducted to assess the performance of the new method under various settings.

摘要

诊断分类模型(DCM)在教育和心理测量中得到了广泛的应用,尤其是在形成性评估中。最近的文献中研究了存在测验单元的 DCM。基于测验单元的 DCM 统计建模和分析的一个关键因素是两个潜在结构的叠加,即属性分布和测验单元效应。本文将标准测验单元 DINA(T-DINA)模型扩展到可以容纳两个潜在结构之间的潜在相关性。研究了模型的可识别性,并提出了一组充分条件。作为副产品,还建立了标准 T-DINA 的可识别性。所提出的模型应用于 2015 年国际学生评估计划的数据集。与 DINA 和 T-DINA 进行了比较,结果表明在拟合优度方面有了很大的提高。进行了模拟以在各种设置下评估新方法的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验