Sun Zhe, Hou Qinggang, Kong Jiahua, Wang Keke, Zhang Ruiling, Liu Feng, Ning Jiajia, Tang Jianguo, Du Zhonglin
Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China.
Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China.
Inorg Chem. 2024 Apr 8;63(14):6396-6407. doi: 10.1021/acs.inorgchem.4c00168. Epub 2024 Mar 25.
Indium phosphide (InP) quantum dots (QDs) have become the most recognized prospect to be less-toxic surrogates for Cd-based optoelectronic systems. Due to the particularly dangling bonds (DBs) and the undesirable oxides, the photoluminescence performance and stability of InP QDs remain to be improved. Previous investigations largely focus on eliminating P-DBs and resultant surface oxidation states; however, little attention has been paid to the adverse effects of the surface In-DBs on InP QDs. This work demonstrates a facile one-step surface peeling and passivation treatment method for both In- and P-DBs for InP QDs. Meanwhile, the surface treatment may also effectively support the encapsulation of the ZnSe shell. Finally, the generated InP/ZnSe QDs display a narrower full width at half-maximum (fwhm) of ∼48 nm, higher photoluminescence quantum yields (PLQYs) of ∼70%, and superior stability. This work enlarges the surface chemistry engineering consideration of InP QDs and considerably promotes the development of efficient and stable optoelectronic devices.
磷化铟(InP)量子点(QDs)已成为最受认可的、有望替代基于镉的光电子系统且毒性较小的材料。由于存在特别的悬空键(DBs)和不良氧化物,InP量子点的光致发光性能和稳定性仍有待提高。以往的研究主要集中在消除P-DBs及由此产生的表面氧化态;然而,表面In-DBs对InP量子点的不利影响却很少受到关注。这项工作展示了一种简便的一步法表面剥离和钝化处理方法,用于处理InP量子点中的In-DBs和P-DBs。同时,这种表面处理还可以有效地支持ZnSe壳层的包覆。最后,所制备的InP/ZnSe量子点的半高宽(fwhm)约为48nm,更窄,光致发光量子产率(PLQYs)约为70%,更高,且具有优异的稳定性。这项工作拓展了InP量子点的表面化学工程考量,并极大地推动了高效稳定光电器件的发展。