Suppr超能文献

拓展磷化铟量子点的近红外发射范围,实现多重成像。

Extending the Near-Infrared Emission Range of Indium Phosphide Quantum Dots for Multiplexed Imaging.

机构信息

Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States.

Photonics Center, Boston University, Boston, Massachusetts 02215, United States.

出版信息

Nano Lett. 2021 Apr 14;21(7):3271-3279. doi: 10.1021/acs.nanolett.1c00600. Epub 2021 Mar 23.

Abstract

This report of the reddest emitting indium phosphide quantum dots (InP QDs) to date demonstrates tunable, near-infrared (NIR) photoluminescence (PL) as well as PL multiplexing in the first optical tissue window while avoiding toxic constituents. This synthesis overcomes the InP "growth bottleneck" and extends the emission peak of InP QDs deeper into the first optical tissue window using an inverted QD heterostructure, specifically ZnSe/InP/ZnS core/shell/shell nanoparticles. The QDs exhibit InP shell thickness-dependent tunable emission with peaks ranging from 515-845 nm. The high absorptivity of InP yields effective photoexcitation of the QDs with UV, visible, and NIR wavelengths. These nanoparticles extend the range of tunable direct-bandgap emission from InP-based nanostructures, effectively overcoming a synthetic barrier that has prevented InP-based QDs from reaching their full potential as NIR imaging agents. Multiplexed lymph node imaging in a mouse model demonstrates the potential of the NIR-emitting InP particles for imaging.

摘要

这份报告介绍了迄今为止红色发射铟磷量子点(InP QDs),这些量子点具有可调近红外(NIR)光致发光(PL)性能,且在第一光学组织窗口中可实现 PL 多重成像,同时避免使用有毒成分。该合成方法克服了 InP 的“生长瓶颈”,并使用倒置 QD 异质结构(具体为 ZnSe/InP/ZnS 核/壳/壳纳米粒子)将 InP QD 的发射峰进一步扩展到第一光学组织窗口。这些 QD 表现出随 InP 壳层厚度可调谐的发射,峰值范围从 515nm 到 845nm。InP 的高吸收率可有效激发 QD 的紫外、可见和近红外波长的光。这些纳米粒子扩展了基于 InP 的纳米结构的可调谐直接带隙发射范围,有效地克服了阻碍基于 InP 的 QD 充分发挥其作为近红外成像剂潜力的合成障碍。在小鼠模型中进行的淋巴结多重成像表明,这些近红外发射 InP 粒子在成像方面具有潜力。

相似文献

4
Engineering Brightness Matched Indium Phosphide Quantum Dots.工程化亮度匹配的磷化铟量子点。
Chem Mater. 2021 Mar 23;33(6):1964-1975. doi: 10.1021/acs.chemmater.0c03181. Epub 2021 Mar 5.

引用本文的文献

4
Multiplexed Shortwave Infrared Imaging Highlights Anatomical Structures in Mice.多色短波近红外成像突出显示小鼠的解剖结构。
Angew Chem Int Ed Engl. 2024 Oct 21;63(43):e202410936. doi: 10.1002/anie.202410936. Epub 2024 Sep 12.
7
The Rise and Future of Discrete Organic-Inorganic Hybrid Nanomaterials.离散有机-无机杂化纳米材料的兴起与未来
ACS Phys Chem Au. 2022 May 28;2(5):364-387. doi: 10.1021/acsphyschemau.2c00018. eCollection 2022 Sep 28.
10
Correlating ZnSe Quantum Dot Absorption with Particle Size and Concentration.将硒化锌量子点吸收与粒径和浓度相关联。
Chem Mater. 2021 Sep 28;33(18):7527-7536. doi: 10.1021/acs.chemmater.1c02501. Epub 2021 Sep 16.

本文引用的文献

4
Shell-Free Copper Indium Sulfide Quantum Dots Induce Toxicity and .无壳铜铟硫量子点诱导毒性及.
Nano Lett. 2020 Mar 11;20(3):1980-1991. doi: 10.1021/acs.nanolett.9b05259. Epub 2020 Feb 5.
7
Infrared Quantum Dots: Progress, Challenges, and Opportunities.红外量子点:进展、挑战与机遇
ACS Nano. 2019 Feb 26;13(2):939-953. doi: 10.1021/acsnano.8b09815. Epub 2019 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验