State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Thorac Cancer. 2024 May;15(13):1050-1059. doi: 10.1111/1759-7714.15295. Epub 2024 Mar 25.
The aim of the present study was to compare the predictive accuracy of PD-L1 immunohistochemistry (IHC), tissue or blood tumor mutation burden (tTMB, bTMB), gene expression profile (GEP), driver gene mutation, and combined biomarkers for immunotherapy response of advanced non-small cell lung cancer (NSCLC).
In part 1, clinical trials involved with predictive biomarker exploration for immunotherapy in advanced NSCLC were included. The area under the curve (AUC) of the summary receiver operating characteristic (SROC), sensitivity, specificity, likelihood ratio and predictive value of the biomarkers were evaluated. In part 2, public datasets of immune checkpoint inhibitor (ICI)-treated NSCLC involved with biomarkers were curated (N = 871). Odds ratio (OR) of the positive versus negative biomarker group for objective response rate (ORR) was measured.
In part 1, the AUC of combined biomarkers (0.75) was higher than PD-L1 (0.64), tTMB (0.64), bTMB (0.68), GEP (0.67), and driver gene mutation (0.51). Combined biomarkers also had higher specificity, positive likelihood ratio and positive predictive value than single biomarkers. In part 2, the OR of combined biomarkers of PD-L1 plus TMB (PD-L1 cutoff 1%, 0.14; cutoff 50% 0.13) was lower than that of PD-L1 (cutoff 1%, 0.33; cutoff 50% 0.24), tTMB (0.28), bTMB (0.48), EGFR mutation (0.17) and KRAS mutation (0.47), for distinguishing ORR of patients after immunotherapy. Furthermore, positive PD-L1, tTMB-high, wild-type EGFR, and positive PD-L1 plus TMB were associated with prolonged progression-free survival (PFS).
Combined biomarkers have superior predictive accuracy than single biomarkers for immunotherapy response of NSCLC. Further investigation is warranted to select optimal biomarkers for various clinical settings.
本研究旨在比较 PD-L1 免疫组化(IHC)、组织或血液肿瘤突变负荷(tTMB、bTMB)、基因表达谱(GEP)、驱动基因突变和联合生物标志物对晚期非小细胞肺癌(NSCLC)免疫治疗反应的预测准确性。
在第 1 部分中,纳入了涉及晚期 NSCLC 免疫治疗预测生物标志物探索的临床试验。评估了生物标志物的汇总受试者工作特征曲线(SROC)下面积(AUC)、灵敏度、特异性、似然比和预测值。在第 2 部分中,整理了涉及生物标志物的免疫检查点抑制剂(ICI)治疗 NSCLC 的公共数据集(N=871)。阳性与阴性生物标志物组对客观缓解率(ORR)的比值比(OR)进行了测量。
在第 1 部分中,联合生物标志物(0.75)的 AUC 高于 PD-L1(0.64)、tTMB(0.64)、bTMB(0.68)、GEP(0.67)和驱动基因突变(0.51)。联合生物标志物的特异性、阳性似然比和阳性预测值也高于单一生物标志物。在第 2 部分中,PD-L1 加 TMB(PD-L1 截断值 1%,0.14;截断值 50%,0.13)联合生物标志物的 OR 低于 PD-L1(截断值 1%,0.33;截断值 50%,0.24)、tTMB(0.28)、bTMB(0.48)、EGFR 突变(0.17)和 KRAS 突变(0.47),用于区分免疫治疗后患者的 ORR。此外,阳性 PD-L1、tTMB 高、野生型 EGFR 和阳性 PD-L1 加 TMB 与无进展生存期(PFS)延长相关。
联合生物标志物对 NSCLC 免疫治疗反应的预测准确性优于单一生物标志物。需要进一步研究以选择各种临床环境下的最佳生物标志物。