文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于预测 NSCLC 中程序性细胞死亡蛋白或配体-1 抑制免疫治疗的治疗反应和肺毒性的新型放射组学生物标志物。

A Novel Radiogenomics Biomarker for Predicting Treatment Response and Pneumotoxicity From Programmed Cell Death Protein or Ligand-1 Inhibition Immunotherapy in NSCLC.

机构信息

Department of Surgery and Cancer, Imperial College, London, United Kingdom; Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom.

Department of Surgery and Cancer, Imperial College, London, United Kingdom.

出版信息

J Thorac Oncol. 2023 Jun;18(6):718-730. doi: 10.1016/j.jtho.2023.01.089. Epub 2023 Feb 10.


DOI:10.1016/j.jtho.2023.01.089
PMID:36773776
Abstract

INTRODUCTION: Patient selection for checkpoint inhibitor immunotherapy is currently guided by programmed death-ligand 1 (PD-L1) expression obtained from immunohistochemical staining of tumor tissue samples. This approach is susceptible to limitations resulting from the dynamic and heterogeneous nature of cancer cells and the invasiveness of the tissue sampling procedure. To address these challenges, we developed a novel computed tomography (CT) radiomic-based signature for predicting disease response in patients with NSCLC undergoing programmed cell death protein 1 (PD-1) or PD-L1 checkpoint inhibitor immunotherapy. METHODS: This retrospective study comprises a total of 194 patients with suitable CT scans out of 340. Using the radiomic features computed from segmented tumors on a discovery set of 85 contrast-enhanced chest CTs of patients diagnosed with having NSCLC and their CD274 count, RNA expression of the protein-encoding gene for PD-L1, as the response vector, we developed a composite radiomic signature, lung cancer immunotherapy-radiomics prediction vector (LCI-RPV). This was validated in two independent testing cohorts of 66 and 43 patients with NSCLC treated with PD-1 or PD-L1 inhibition immunotherapy, respectively. RESULTS: LCI-RPV predicted PD-L1 positivity in both NSCLC testing cohorts (area under the curve [AUC] = 0.70, 95% confidence interval [CI]: 0.57-0.84 and AUC = 0.70, 95% CI: 0.46-0.94). In one cohort, it also demonstrated good prediction of cases with high PD-L1 expression exceeding key treatment thresholds (>50%: AUC = 0.72, 95% CI: 0.59-0.85 and >90%: AUC = 0.66, 95% CI: 0.45-0.88), the tumor's objective response to treatment at 3 months (AUC = 0.68, 95% CI: 0.52-0.85), and pneumonitis occurrence (AUC = 0.64, 95% CI: 0.48-0.80). LCI-RPV achieved statistically significant stratification of the patients into a high- and low-risk survival group (hazard ratio = 2.26, 95% CI: 1.21-4.24, p = 0.011 and hazard ratio = 2.45, 95% CI: 1.07-5.65, p = 0.035). CONCLUSIONS: A CT radiomics-based signature developed from response vector CD274 can aid in evaluating patients' suitability for PD-1 or PD-L1 checkpoint inhibitor immunotherapy in NSCLC.

摘要

简介:目前,检查点抑制剂免疫疗法的患者选择由肿瘤组织样本免疫组织化学染色获得的程序性死亡配体 1(PD-L1)表达指导。这种方法容易受到癌症细胞的动态和异质性以及组织取样过程的侵袭性带来的限制。为了解决这些挑战,我们开发了一种新的基于计算机断层扫描(CT)的放射组学特征,用于预测接受程序性细胞死亡蛋白 1(PD-1)或 PD-L1 检查点抑制剂免疫治疗的非小细胞肺癌(NSCLC)患者的疾病反应。

方法:这项回顾性研究共包括 340 名患者中 194 名具有合适 CT 扫描的患者。我们使用从在发现组的 85 名被诊断患有 NSCLC 的患者的增强胸部 CT 扫描上分割的肿瘤计算的放射组学特征,并将 CD274 计数作为反应向量,开发了一个复合放射组学特征,即肺癌免疫治疗放射组学预测向量(LCI-RPV)。该特征在接受 PD-1 或 PD-L1 抑制免疫治疗的 NSCLC 的两个独立测试队列中分别对 66 名和 43 名患者进行了验证。

结果:LCI-RPV 在两个 NSCLC 测试队列中均能预测 PD-L1 阳性(曲线下面积 [AUC] = 0.70,95%置信区间 [CI]:0.57-0.84 和 AUC = 0.70,95%CI:0.46-0.94)。在一个队列中,它还很好地预测了高 PD-L1 表达水平超过关键治疗阈值的病例(>50%:AUC = 0.72,95%CI:0.59-0.85 和>90%:AUC = 0.66,95%CI:0.45-0.88)、肿瘤在 3 个月时对治疗的客观反应(AUC = 0.68,95%CI:0.52-0.85)和肺炎发生(AUC = 0.64,95%CI:0.48-0.80)。LCI-RPV 实现了对患者进行高风险和低风险生存组的统计学显著分层(风险比=2.26,95%CI:1.21-4.24,p=0.011 和风险比=2.45,95%CI:1.07-5.65,p=0.035)。

结论:从反应向量 CD274 开发的 CT 放射组学特征可以帮助评估 NSCLC 患者对 PD-1 或 PD-L1 检查点抑制剂免疫治疗的适用性。

相似文献

[1]
A Novel Radiogenomics Biomarker for Predicting Treatment Response and Pneumotoxicity From Programmed Cell Death Protein or Ligand-1 Inhibition Immunotherapy in NSCLC.

J Thorac Oncol. 2023-6

[2]
A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study.

Lancet Oncol. 2018-8-14

[3]
Radiomics study for predicting the expression of PD-L1 in non-small cell lung cancer based on CT images and clinicopathologic features.

J Xray Sci Technol. 2020

[4]
Radiomics Models Derived From Arterial-Phase-Enhanced CT Reliably Predict Both PD-L1 Expression and Immunotherapy Prognosis in Non-small Cell Lung Cancer: A Retrospective, Multicenter Cohort Study.

Acad Radiol. 2025-1

[5]
Association of Survival and Immune-Related Biomarkers With Immunotherapy in Patients With Non-Small Cell Lung Cancer: A Meta-analysis and Individual Patient-Level Analysis.

JAMA Netw Open. 2019-7-3

[6]
A novel sub-regional radiomics model to predict immunotherapy response in non-small cell lung carcinoma.

J Transl Med. 2024-1-22

[7]
Pretreatment radiomic biomarker for immunotherapy responder prediction in stage IB-IV NSCLC (LCDigital-IO Study): a multicenter retrospective study.

J Immunother Cancer. 2023-10

[8]
Robust Prediction of Immune Checkpoint Inhibition Therapy for Non-Small Cell Lung Cancer.

Front Immunol. 2021

[9]
Deep Learning Model for Predicting Immunotherapy Response in Advanced Non-Small Cell Lung Cancer.

JAMA Oncol. 2025-2-1

[10]
[Construction of A Nomogram Prediction Model for PD-L1 Expression 
in Non-small Cell Lung Cancer Based on 18F-FDG PET/CT Metabolic Parameters].

Zhongguo Fei Ai Za Zhi. 2023-11-20

引用本文的文献

[1]
Ginseng-Derived Exosomes Attenuate Immune Evasion in NSCLC via PD-L1 Modulation.

Cancer Manag Res. 2025-7-24

[2]
Dual Targeting of Inflammatory and Immune Checkpoint Pathways to Overcome Radiotherapy Resistance in Esophageal Squamous Cell Carcinoma.

J Inflamm Res. 2025-7-12

[3]
Progress and challenges of artificial intelligence in lung cancer clinical translation.

NPJ Precis Oncol. 2025-7-1

[4]
Prediction of radiosensitivity in non-small cell lung cancer based on computed tomography and tumor genomics: a multiple real world cohort study.

Respir Res. 2025-4-11

[5]
Short-term intra- and peri-tumoral spatiotemporal CT radiomics for predicting major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer.

Eur Radiol. 2025-4-11

[6]
Application of peritumoral radiomics based on simulated positioning CT images in the prognosis of intermediate-advanced esophageal cancer.

Sci Rep. 2025-4-7

[7]
Habitat radiomics analysis for progression free survival and immune-related adverse reaction prediction in non-small cell lung cancer treated by immunotherapy.

J Transl Med. 2025-4-3

[8]
From images to clinical insights: an educational review on radiomics in lung diseases.

Breathe (Sheff). 2025-3-18

[9]
Monitoring peripheral blood data supports the prediction of immunotherapy response in advanced non-small cell lung cancer based on real-world data.

Cancer Immunol Immunother. 2025-2-25

[10]
Radiomics and Deep Learning Prediction of Immunotherapy-Induced Pneumonitis From Computed Tomography.

JCO Clin Cancer Inform. 2025-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索