Ji Yi, Chen Kuizhi, Han Xiuwen, Bao Xinhe, Hou Guangjin
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
J Am Chem Soc. 2024 Mar 25. doi: 10.1021/jacs.3c14787.
Despite the extensive industrial and research interests in zeolites, their intrinsic catalytic nature is not fully understood due to the complexity of the hydroxyl-aluminum moieties. O NMR would provide irreplaceable opportunities for much-needed fine structural determination given the ubiquitous presence of oxygen atoms in nearly all species; however, the low sensitivity and quadrupolar nature of oxygen-17 make its NMR spectroscopic elucidation challenging. Here, we show that state-of-the-art double resonance solid-state NMR techniques have been combined with spectral editing methods based on scalar (through-bond) and dipolar (through-space) couplings, which allowed us to address the subtle protonic structures in zeolites. Notably, the often-neglected and undesired second-order quadrupolar-dipolar cross-term interaction ("2nd-QD interaction") can actually be exploited and can help gain invaluable information. Eventually, a comprehensive set of H-O/H-Al double resonance NMR with -/-coupling spectral editing techniques have been designed in this work and enabled us to reveal atomic-scale precise structural and dynamical details in zeolites including: 1) The jump rate of the bridging acid site (BAS) proton is relatively low, i.e., far less than 100 s at room temperature. 2) The Al-OH groups with H chemical shift at 2.6-2.8 ppm, at least for nonseverely dealuminated H-ZSM-5 catalysts, exhibit a rigid bridging environment similar to that of BAS. 3) The Si-OH groups at 2.0 ppm are not hydrogen bonded and undergo fast cone-rotational motion. The results in this study predict the 2nd-QD interaction to be universal for any rigid -O-H environment, such as those in metal oxide surfaces or biomaterials.
尽管沸石在工业和研究领域有着广泛的兴趣,但其内在的催化性质由于羟基铝部分的复杂性而尚未得到充分理解。鉴于几乎所有物种中都普遍存在氧原子,¹⁷O NMR将为急需的精细结构测定提供不可替代的机会;然而,氧-17的低灵敏度和四极性质使其NMR光谱解析具有挑战性。在这里,我们表明,先进的双共振固态NMR技术已与基于标量(通过键)和偶极(通过空间)耦合的光谱编辑方法相结合,这使我们能够解决沸石中微妙的质子结构问题。值得注意的是,经常被忽视且不希望出现的二阶四极-偶极交叉项相互作用(“二阶QD相互作用”)实际上可以被利用,并有助于获得宝贵的信息。最终,在这项工作中设计了一套全面的具有⁻/⁻耦合光谱编辑技术的H-O/H-Al双共振NMR,并使我们能够揭示沸石中原子尺度的精确结构和动力学细节,包括:1)桥连酸位点(BAS)质子的跳跃速率相对较低,即在室温下远小于100 s⁻¹。2)对于至少非严重脱铝的H-ZSM-5催化剂,H化学位移在2.6-2.8 ppm的Al-OH基团表现出与BAS相似的刚性桥连环境。3)化学位移在2.0 ppm的Si-OH基团没有氢键作用,并且经历快速的锥旋转运动。本研究的结果预测二阶QD相互作用对于任何刚性的-O-H环境都是普遍存在的,例如金属氧化物表面或生物材料中的环境。