文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用工程化的恶臭假单胞菌对中链长度均匀和不均匀二元醇及二元羧酸进行生物升级循环利用生产聚羟基烷酸酯。

Bio-upcycling of even and uneven medium-chain-length diols and dicarboxylates to polyhydroxyalkanoates using engineered Pseudomonas putida.

机构信息

Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.

出版信息

Microb Cell Fact. 2024 Feb 16;23(1):54. doi: 10.1186/s12934-024-02310-7.


DOI:10.1186/s12934-024-02310-7
PMID:38365718
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10870600/
Abstract

Bio-upcycling of plastics is an emerging alternative process that focuses on extracting value from a wide range of plastic waste streams. Such streams are typically too contaminated to be effectively processed using traditional recycling technologies. Medium-chain-length (mcl) diols and dicarboxylates (DCA) are major products of chemically or enzymatically depolymerized plastics, such as polyesters or polyethers. In this study, we enabled the efficient metabolism of mcl-diols and -DCA in engineered Pseudomonas putida as a prerequisite for subsequent bio-upcycling. We identified the transcriptional regulator GcdR as target for enabling metabolism of uneven mcl-DCA such as pimelate, and uncovered amino acid substitutions that lead to an increased coupling between the heterologous β-oxidation of mcl-DCA and the native degradation of short-chain-length DCA. Adaptive laboratory evolution and subsequent reverse engineering unravelled two distinct pathways for mcl-diol metabolism in P. putida, namely via the hydroxy acid and subsequent native β-oxidation or via full oxidation to the dicarboxylic acid that is further metabolized by heterologous β-oxidation. Furthermore, we demonstrated the production of polyhydroxyalkanoates from mcl-diols and -DCA by a single strain combining all required metabolic features. Overall, this study provides a powerful platform strain for the bio-upcycling of complex plastic hydrolysates to polyhydroxyalkanoates and leads the path for future yield optimizations.

摘要

生物升级利用塑料是一种新兴的替代工艺,专注于从各种塑料废料流中提取价值。这些废料流通常受到严重污染,无法通过传统的回收技术进行有效处理。中链长度(mcl)二醇和二羧酸(DCA)是化学或酶解塑料(如聚酯或聚醚)的主要产物。在这项研究中,我们使工程假单胞菌能够有效地代谢 mcl-二醇和-DCA,作为随后生物升级利用的前提。我们确定了转录调节因子 GcdR 是代谢不均匀 mcl-DCA(如己二酸)的目标,并发现了导致 mcl-DCA 异源β-氧化与天然短链 DCA 降解之间偶联增加的氨基酸取代。适应性实验室进化和随后的反向工程揭示了假单胞菌中 mcl-二醇代谢的两种不同途径,即通过羟基酸和随后的天然β-氧化,或通过完全氧化为二酸,进一步通过异源β-氧化代谢。此外,我们通过结合所有必需代谢特征的单一菌株,从 mcl-二醇和-DCA 生产出聚羟基烷酸酯。总的来说,这项研究为将复杂的塑料水解物生物升级利用为聚羟基烷酸酯提供了一个强大的平台菌株,并为未来的产量优化指明了方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ef/10870600/0e2f9e721a01/12934_2024_2310_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ef/10870600/3f08471b71a2/12934_2024_2310_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ef/10870600/5f0e5f46eb12/12934_2024_2310_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ef/10870600/b1277a6c3c93/12934_2024_2310_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ef/10870600/f8efd5bcc041/12934_2024_2310_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ef/10870600/bf3374079628/12934_2024_2310_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ef/10870600/0e2f9e721a01/12934_2024_2310_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ef/10870600/3f08471b71a2/12934_2024_2310_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ef/10870600/5f0e5f46eb12/12934_2024_2310_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ef/10870600/b1277a6c3c93/12934_2024_2310_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ef/10870600/f8efd5bcc041/12934_2024_2310_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ef/10870600/bf3374079628/12934_2024_2310_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ef/10870600/0e2f9e721a01/12934_2024_2310_Fig6_HTML.jpg

相似文献

[1]
Bio-upcycling of even and uneven medium-chain-length diols and dicarboxylates to polyhydroxyalkanoates using engineered Pseudomonas putida.

Microb Cell Fact. 2024-2-16

[2]
Engineering adipic acid metabolism in Pseudomonas putida.

Metab Eng. 2021-9

[3]
Metabolic engineering of genome-streamlined strain Pseudomonas putida KTU-U27 for medium-chain-length polyhydroxyalkanoate production from xylose and cellobiose.

Int J Biol Macromol. 2023-12-31

[4]
Pseudomonas putida as a platform for medium-chain length α,ω-diol production: Opportunities and challenges.

Microb Biotechnol. 2024-3

[5]
Characterization and engineering of branched short-chain dicarboxylate metabolism in Pseudomonas reveals resistance to fungal 2-hydroxyparaconate.

Metab Eng. 2023-1

[6]
Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440.

BMC Biotechnol. 2012-8-22

[7]
Enhanced production of polyhydroxyalkanoates in Pseudomonas putida KT2440 by a combination of genome streamlining and promoter engineering.

Int J Biol Macromol. 2022-6-1

[8]
Metabolic engineering of Pseudomonas putida for increased polyhydroxyalkanoate production from lignin.

Microb Biotechnol. 2020-1

[9]
A 2D-DIGE-based proteomic analysis brings new insights into cellular responses of Pseudomonas putida KT2440 during polyhydroxyalkanoates synthesis.

Microb Cell Fact. 2019-5-28

[10]
Enhancing Pseudomonas cell growth for the production of medium-chain-length polyhydroxyalkanoates from Antarctic krill shell waste.

Int J Biol Macromol. 2024-10

引用本文的文献

[1]
Engineering of 1,4-Butanediol and Adipic Acid Metabolism in Pseudomonas taiwanensis for Upcycling to Aromatic Compounds.

Microb Biotechnol. 2025-8

[2]
Upcycling of polyamides through chemical hydrolysis and engineered Pseudomonas putida.

Nat Microbiol. 2025-3

[3]
A single-plasmid-based, easily curable CRISPR/Cas9 system for rapid, iterative genome editing in Pseudomonas putida KT2440.

Microb Cell Fact. 2024-12-30

[4]
Enhanced biosynthesis of poly(3-hydroxybutyrate) in engineered strains of Pseudomonas putida via increased malonyl-CoA availability.

Microb Biotechnol. 2024-11

本文引用的文献

[1]
β-oxidation-polyhydroxyalkanoates synthesis relationship in Pseudomonas putida KT2440 revisited.

Appl Microbiol Biotechnol. 2023-3

[2]
Characterization and engineering of branched short-chain dicarboxylate metabolism in Pseudomonas reveals resistance to fungal 2-hydroxyparaconate.

Metab Eng. 2023-1

[3]
Mixed plastics waste valorization through tandem chemical oxidation and biological funneling.

Science. 2022-10-14

[4]
ColabFold: making protein folding accessible to all.

Nat Methods. 2022-6

[5]
The metabolic potential of plastics as biotechnological carbon sources - Review and targets for the future.

Metab Eng. 2022-5

[6]
Robust process for high yield conversion of non-degradable polyethylene to a biodegradable plastic using a chemo-biotechnological approach.

Waste Manag. 2021-11

[7]
Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways.

Essays Biochem. 2021-7-26

[8]
From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications.

Nanomaterials (Basel). 2021-6-4

[9]
Engineering adipic acid metabolism in Pseudomonas putida.

Metab Eng. 2021-9

[10]
Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates.

Biotechnol J. 2021-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索