Suppr超能文献

CT图像中嗜铬细胞瘤和副神经节瘤的弱监督检测

Weakly Supervised Detection of Pheochromocytomas and Paragangliomas in CT.

作者信息

Oluigbo David C, Santra Bikash, Mathai Tejas Sudharshan, Mukherjee Pritam, Liu Jianfei, Jha Abhishek, Patel Mayank, Pacak Karel, Summers Ronald M

机构信息

Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda MD, USA.

National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

出版信息

ArXiv. 2024 Feb 12:arXiv:2402.08697v1.

Abstract

Pheochromocytomas and Paragangliomas (PPGLs) are rare adrenal and extra-adrenal tumors which have the potential to metastasize. For the management of patients with PPGLs, CT is the preferred modality of choice for precise localization and estimation of their progression. However, due to the myriad variations in size, morphology, and appearance of the tumors in different anatomical regions, radiologists are posed with the challenge of accurate detection of PPGLs. Since clinicians also need to routinely measure their size and track their changes over time across patient visits, manual demarcation of PPGLs is quite a time-consuming and cumbersome process. To ameliorate the manual effort spent for this task, we propose an automated method to detect PPGLs in CT studies via a proxy segmentation task. As only weak annotations for PPGLs in the form of prospectively marked 2D bounding boxes on an axial slice were available, we extended these 2D boxes into weak 3D annotations and trained a 3D full-resolution nnUNet model to directly segment PPGLs. We evaluated our approach on a dataset consisting of chest-abdomen-pelvis CTs of 255 patients with confirmed PPGLs. We obtained a precision of 70% and sensitivity of 64.1% with our proposed approach when tested on 53 CT studies. Our findings highlight the promising nature of detecting PPGLs via segmentation, and furthers the state-of-the-art in this exciting yet challenging area of rare cancer management.

摘要

嗜铬细胞瘤和副神经节瘤(PPGLs)是罕见的肾上腺和肾上腺外肿瘤,具有转移的可能性。对于PPGLs患者的管理,CT是精确定位和评估其进展的首选检查方式。然而,由于不同解剖区域肿瘤的大小、形态和外观存在无数变化,放射科医生面临着准确检测PPGLs的挑战。由于临床医生还需要定期测量肿瘤大小并在患者就诊期间跟踪其随时间的变化,手动划定PPGLs是一个相当耗时且繁琐的过程。为了减少这项任务的人工工作量,我们提出了一种通过代理分割任务在CT研究中检测PPGLs的自动化方法。由于仅以前瞻性标记的轴向切片上的二维边界框形式提供了PPGLs的弱注释,我们将这些二维框扩展为弱三维注释,并训练了一个三维全分辨率nnUNet模型来直接分割PPGLs。我们在一个由255例确诊为PPGLs患者的胸腹盆腔CT组成的数据集上评估了我们的方法。在对53项CT研究进行测试时,我们提出的方法获得了70%的精度和64.1%的灵敏度。我们的研究结果突出了通过分割检测PPGLs的前景,并推动了这个罕见癌症管理中令人兴奋但具有挑战性的领域的技术发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e0/10962743/a9ddca6843c1/nihpp-2402.08697v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验