Wasserthal Jakob, Breit Hanns-Christian, Meyer Manfred T, Pradella Maurice, Hinck Daniel, Sauter Alexander W, Heye Tobias, Boll Daniel T, Cyriac Joshy, Yang Shan, Bach Michael, Segeroth Martin
From the Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland, Petersgraben 4, 4031 Basel, Switzerland.
Radiol Artif Intell. 2023 Jul 5;5(5):e230024. doi: 10.1148/ryai.230024. eCollection 2023 Sep.
To present a deep learning segmentation model that can automatically and robustly segment all major anatomic structures on body CT images.
In this retrospective study, 1204 CT examinations (from 2012, 2016, and 2020) were used to segment 104 anatomic structures (27 organs, 59 bones, 10 muscles, and eight vessels) relevant for use cases such as organ volumetry, disease characterization, and surgical or radiation therapy planning. The CT images were randomly sampled from routine clinical studies and thus represent a real-world dataset (different ages, abnormalities, scanners, body parts, sequences, and sites). The authors trained an nnU-Net segmentation algorithm on this dataset and calculated Dice similarity coefficients to evaluate the model's performance. The trained algorithm was applied to a second dataset of 4004 whole-body CT examinations to investigate age-dependent volume and attenuation changes.
The proposed model showed a high Dice score (0.943) on the test set, which included a wide range of clinical data with major abnormalities. The model significantly outperformed another publicly available segmentation model on a separate dataset (Dice score, 0.932 vs 0.871; < .001). The aging study demonstrated significant correlations between age and volume and mean attenuation for a variety of organ groups (eg, age and aortic volume [ = 0.64; < .001]; age and mean attenuation of the autochthonous dorsal musculature [ = -0.74; < .001]).
The developed model enables robust and accurate segmentation of 104 anatomic structures. The annotated dataset () and toolkit () are publicly available. CT, Segmentation, Neural Networks . © RSNA, 2023See also commentary by Sebro and Mongan in this issue.
提出一种深度学习分割模型,该模型能够自动且稳健地分割人体CT图像上的所有主要解剖结构。
在这项回顾性研究中,使用了1204例CT检查(来自2012年、2016年和2020年)来分割104个与器官容积测量、疾病特征描述以及手术或放射治疗计划等用例相关的解剖结构(27个器官、59块骨骼、10块肌肉和8条血管)。CT图像是从常规临床研究中随机抽取的,因此代表了一个真实世界的数据集(不同年龄、异常情况、扫描仪、身体部位、序列和扫描部位)。作者在该数据集上训练了nnU-Net分割算法,并计算Dice相似系数以评估模型的性能。将训练好的算法应用于包含4004例全身CT检查的第二个数据集,以研究年龄相关的容积和衰减变化。
所提出的模型在测试集上显示出较高的Dice分数(0.943),该测试集包含了广泛的伴有主要异常情况的临床数据。在一个单独的数据集上,该模型显著优于另一个公开可用的分割模型(Dice分数,0.932对0.871;P <.001)。衰老研究表明,多种器官组的年龄与容积以及平均衰减之间存在显著相关性(例如,年龄与主动脉容积[r = 0.64;P <.001];年龄与固有背部肌肉的平均衰减[r = -0.74;P <.001])。
所开发的模型能够对104个解剖结构进行稳健且准确的分割。带注释的数据集()和工具包()可公开获取。CT,分割,神经网络。©RSNA,2023另见本期Sebro和Mongan的评论。