Suppr超能文献

基于深度学习的定量磁化率映射概述:现状、挑战与机遇。

Overview of quantitative susceptibility mapping using deep learning: Current status, challenges and opportunities.

机构信息

Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea.

ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.

出版信息

NMR Biomed. 2022 Apr;35(4):e4292. doi: 10.1002/nbm.4292. Epub 2020 Mar 23.

Abstract

Quantitative susceptibility mapping (QSM) has gained broad interest in the field by extracting bulk tissue magnetic susceptibility, predominantly determined by myelin, iron and calcium from magnetic resonance imaging (MRI) phase measurements in vivo. Thereby, QSM can reveal pathological changes of these key components in a variety of diseases. QSM requires multiple processing steps such as phase unwrapping, background field removal and field-to-source inversion. Current state-of-the-art techniques utilize iterative optimization procedures to solve the inversion and background field correction, which are computationally expensive and require a careful choice of regularization parameters. With the recent success of deep learning using convolutional neural networks for solving ill-posed reconstruction problems, the QSM community also adapted these techniques and demonstrated that the QSM processing steps can be solved by efficient feed forward multiplications not requiring either iterative optimization or the choice of regularization parameters. Here, we review the current status of deep learning-based approaches for processing QSM, highlighting limitations and potential pitfalls, and discuss the future directions the field may take to exploit the latest advances in deep learning for QSM.

摘要

定量磁敏感图(QSM)通过从体内磁共振成像(MRI)相位测量中提取主要由髓鞘、铁和钙决定的体组织磁化率,在该领域引起了广泛关注。因此,QSM 可以揭示各种疾病中这些关键成分的病理变化。QSM 需要多个处理步骤,例如相位解缠、背景场去除和场到源反转。当前最先进的技术利用迭代优化过程来解决反转和背景场校正问题,这在计算上很昂贵,并且需要仔细选择正则化参数。随着使用卷积神经网络解决不适定重建问题的深度学习的最新成功,QSM 社区也采用了这些技术,并证明 QSM 处理步骤可以通过不需要迭代优化或正则化参数选择的高效前馈乘法来解决。在这里,我们回顾了基于深度学习的 QSM 处理方法的最新进展,强调了其局限性和潜在的陷阱,并讨论了该领域可能采取的未来方向,以利用深度学习的最新进展进行 QSM。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验