Jones Dakota L, Morley Michael P, Li Xinyuan, Ying Yun, Cardenas-Diaz Fabian L, Li Shanru, Zhou Su, Schaefer Sarah E, Chembazhi Ullas V, Nottingham Ana, Lin Susan, Cantu Edward, Diamond Joshua M, Basil Maria C, Vaughan Andrew E, Morrisey Edward E
Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
bioRxiv. 2024 Feb 29:2024.02.26.582147. doi: 10.1101/2024.02.26.582147.
Severe lung injury causes basal stem cells to migrate and outcompete alveolar stem cells resulting in dysplastic repair and a loss of gas exchange function. This "stem cell collision" is part of a multistep process that is now revealed to generate an injury-induced tissue niche (iTCH) containing Keratin 5+ epithelial cells and plastic Pdgfra+ mesenchymal cells. Temporal and spatial single cell analysis reveals that iTCHs are governed by mesenchymal proliferation and Notch signaling, which suppresses Wnt and Fgf signaling in iTCHs. Conversely, loss of Notch in iTCHs rewires alveolar signaling patterns to promote euplastic regeneration and gas exchange. The signaling patterns of iTCHs can differentially phenotype fibrotic from degenerative human lung diseases, through apposing flows of FGF and WNT signaling. These data reveal the emergence of an injury and disease associated iTCH in the lung and the ability of using iTCH specific signaling patterns to discriminate human lung disease phenotypes.
严重肺损伤会导致基底干细胞迁移并胜过肺泡干细胞,从而导致发育异常修复和气体交换功能丧失。这种“干细胞碰撞”是一个多步骤过程的一部分,现在发现该过程会产生一个由损伤诱导的组织微环境(iTCH),其中包含角蛋白5+上皮细胞和可塑性血小板衍生生长因子受体α(Pdgfra)+间充质细胞。时空单细胞分析表明,iTCH受间充质增殖和Notch信号调控,Notch信号抑制iTCH中的Wnt和Fgf信号。相反,iTCH中Notch的缺失会重新调整肺泡信号模式,以促进正常再生和气体交换。通过FGF和WNT信号的相反流动,iTCH的信号模式可以区分人类肺纤维化疾病和退行性疾病。这些数据揭示了肺中与损伤和疾病相关的iTCH的出现,以及利用iTCH特异性信号模式区分人类肺疾病表型的能力。