Nolan Suzanne O, Melugin Patrick R, Erickson Kirsty R, Adams Wilson R, Farahbakhsh Zahra Z, Mcgonigle Colleen E, Kwon Michelle H, Costa Vincent D, Lapish Christopher C, Hackett Troy A, Cuzon Carlson Verginia C, Constantinidis Christos, Grant Kathleen A, Siciliano Cody A
bioRxiv. 2023 Sep 24:2023.09.23.559125. doi: 10.1101/2023.09.23.559125.
Human and non-human primate data clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions . It is thought that intracortical synaptic architectures within dlPFC are the integral neurobiological substrate that gives rise to these processes, including working memory, inferential reasoning, and decision-making . In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the 'canonical' cortical microcircuit . Each cortical microcircuit receives sensory and cognitive information from a variety of sources which are represented by sustained activity within the microcircuit, referred to as persistent or recurrent activity . Via recurrent connections within the microcircuit, activity can propagate for a variable length of time, thereby allowing temporary storage and computations to occur locally before ultimately passing a transformed representation to a downstream output . Competing theories regarding how microcircuit activity is coordinated have proven difficult to reconcile where intercortical and intracortical computations cannot be fully dissociated . Here, we interrogated the intrinsic features of isolated microcircuit networks using high-density calcium imaging of macaque dlPFC . We found that spontaneous activity is intrinsically maintained by microcircuit architecture, persisting at a high rate in the absence of extrinsic connections. Further, using perisulcal stimulation to evoke persistent activity in deep layers, we found that activity propagates through stochastically assembled intracortical networks, creating predictable population-level events from largely non-overlapping ensembles. Microcircuit excitability covaried with individual cognitive performance, thus anchoring heuristic models of abstract cortical functions within quantifiable constraints imposed by the underlying synaptic architecture.
人类和非人类灵长类动物的数据清楚地表明,背外侧前额叶皮层(dlPFC)对高级认知功能至关重要。人们认为,dlPFC内的皮质内突触结构是产生这些过程的不可或缺的神经生物学基础,这些过程包括工作记忆、推理和决策。在流行的模型中,每个皮质柱构成一个基本的处理单元,由密集的内在连接组成,被概念化为“典型”的皮质微电路。每个皮质微电路从各种来源接收感觉和认知信息,这些信息由微电路内的持续活动表示,称为持续或循环活动。通过微电路内的循环连接,活动可以传播可变的时间长度,从而允许在局部进行临时存储和计算,最终将变换后的表征传递给下游输出。关于微电路活动如何协调的相互竞争的理论已被证明难以调和,因为皮质间和皮质内的计算无法完全分离。在这里,我们使用猕猴dlPFC的高密度钙成像来研究孤立微电路网络的内在特征。我们发现,自发活动由微电路结构内在维持,在没有外部连接的情况下以高频率持续存在。此外,使用沟周刺激在深层诱发持续活动,我们发现活动通过随机组装的皮质内网络传播,从很大程度上不重叠的集合中产生可预测的群体水平事件。微电路兴奋性与个体认知表现相关,从而将抽象皮质功能的启发式模型锚定在由潜在突触结构施加的可量化约束内。