Nolan Suzanne O, Melugin Patrick R, Erickson Kirsty R, Adams Wilson R, Farahbakhsh Zahra Z, Mcgonigle Colleen E, Kwon Michelle H, Costa Vincent D, Hackett Troy A, Cuzon Carlson Verginia C, Constantinidis Christos, Lapish Christopher C, Grant Kathleen A, Siciliano Cody A
Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA.
Department of Psychology, Indiana University Indianapolis, Indianapolis, IN 46202, USA.
Curr Biol. 2025 Jan 20;35(2):431-443.e4. doi: 10.1016/j.cub.2024.11.069. Epub 2025 Jan 6.
Human and non-human primate studies clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions. It is thought that intracortical synaptic architectures within the dlPFC are the integral neurobiological substrate that gives rise to these processes. In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the "canonical" cortical microcircuit. Each cortical microcircuit receives sensory and cognitive information from upstream sources, which are represented by sustained activity within the microcircuit, referred to as persistent or recurrent activity. Via recurrent connections within the microcircuit, activity propagates for a variable length of time, thereby allowing temporary storage and computations to occur locally before ultimately passing a transformed representation to a downstream output. Competing theories regarding how microcircuit activity is coordinated have proven difficult to reconcile in vivo, where intercortical and intracortical computations cannot be fully dissociated. Here, using high-density calcium imaging of macaque dlPFC, we isolated intracortical computations by interrogating microcircuit networks ex vivo. Using peri-sulcal stimulation to evoke recurrent activity in deep layers, we found that activity propagates through stochastically assembled intracortical networks wherein orderly, predictable, low-dimensional collective dynamics arise from ensembles with highly labile cellular memberships. Microcircuit excitability covaried with individual cognitive performance, thus anchoring heuristic models of abstract cortical functions within quantifiable constraints imposed by the underlying synaptic architecture. Our findings argue against engram or localist architectures, together demonstrating that generation of high-fidelity population-level signals from distributed, labile networks is an intrinsic feature of dlPFC microcircuitry.
人类和非人类灵长类动物研究清楚地表明,背外侧前额叶皮层(dlPFC)对高级认知功能至关重要。人们认为,dlPFC内的皮质内突触结构是产生这些过程的不可或缺的神经生物学基础。在主流模型中,每个皮质柱构成一个基本处理单元,由密集的内在连接组成,被概念化为“典型”皮质微电路。每个皮质微电路从上游源接收感觉和认知信息,这些信息由微电路内的持续活动表示,称为持续或循环活动。通过微电路内的循环连接,活动传播可变长度的时间,从而允许在局部进行临时存储和计算,最终将变换后的表示传递给下游输出。关于微电路活动如何协调的相互竞争的理论在体内难以协调,因为皮质间和皮质内的计算不能完全分离。在这里,我们使用猕猴dlPFC的高密度钙成像,通过在体外研究微电路网络来分离皮质内计算。使用沟周刺激在深层诱发循环活动,我们发现活动通过随机组装的皮质内网络传播,其中有序、可预测的低维集体动力学源于具有高度不稳定细胞成员的集合。微电路兴奋性与个体认知表现相关,从而将抽象皮质功能的启发式模型锚定在由潜在突触结构施加的可量化约束内。我们的发现反对记忆痕迹或局部主义架构,共同表明从分布式、不稳定网络生成高保真群体水平信号是dlPFC微电路的一个固有特征。