Suppr超能文献

基于免疫细胞浸润景观的新型基因特征可预测肺腺癌患者的预后。

A Novel Gene Signature based on Immune Cell Infiltration Landscape Predicts Prognosis in Lung Adenocarcinoma Patients.

机构信息

Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

出版信息

Curr Med Chem. 2024;31(38):6319-6335. doi: 10.2174/0109298673293174240320053546.

Abstract

BACKGROUND

The tumor microenvironment (TME) is created by the tumor and dominated by tumor-induced interactions. Long-term survival of lung adenocarcinoma (LUAD) patients is strongly influenced by immune cell infiltration in TME. The current article intends to construct a gene signature from LUAD ICI for predicting patient outcomes.

METHODS

For the initial phase of the study, the TCGA-LUAD dataset was chosen as the training group for dataset selection. We found two datasets named GSE72094 and GSE68465 in the Gene Expression Omnibus (GEO) database for model validation. Unsupervised clustering was performed on the training cohort patients using the ICI profiles. We employed Kaplan-Meier estimators and univariate Cox proportional-hazard models to identify prognostic differentially expressed genes in immune cell infiltration (ICI) clusters. These prognostic genes are then used to develop a LASSO Cox model that generates a prognostic gene signature. Validation was performed using Kaplan-Meier estimation, Cox, and ROC analysis. Our signature and vital immune-relevant signatures were analyzed. Finally, we performed gene set enrichment analysis (GSEA) and immune infiltration analysis on our finding gene signature to further examine the functional mechanisms and immune cellular interactions.

RESULTS

Our study found a sixteen-gene signature (EREG, HPGDS, TSPAN32, ACSM5, SFTPD, SCN7A, CCR2, S100P, KLK12, MS4A1, INHA, HOXB9, CYP4B1, SPOCK1, STAP1, and ACAP1) to be prognostic based on data from the training cohort. This prognostic signature was certified by Kaplan-Meier, Cox proportional-hazards, and ROC curves. 11/15 immune-relevant signatures were related to our signature. The GSEA results indicated our gene signature strongly correlates with immune-related pathways. Based on the immune infiltration analysis findings, it can be deduced that a significant portion of the prognostic significance of the signature can be attributed to resting mast cells.

CONCLUSION

We used bioinformatics to determine a new, robust sixteen-gene signature. We also found that this signature's prognostic ability was closely related to the resting mast cell infiltration of LUAD patients.

摘要

背景

肿瘤微环境(TME)是由肿瘤产生的,并由肿瘤诱导的相互作用所主导。肺癌(LUAD)患者的长期生存受 TME 中免疫细胞浸润的强烈影响。本文旨在构建一个来自 LUAD ICI 的基因特征,以预测患者的预后。

方法

在研究的初始阶段,选择 TCGA-LUAD 数据集作为训练组进行数据集选择。我们在基因表达综合数据库(GEO)中找到了两个名为 GSE72094 和 GSE68465 的数据集用于模型验证。使用 ICI 谱对训练队列患者进行无监督聚类。我们使用 Kaplan-Meier 估计器和单变量 Cox 比例风险模型来识别免疫细胞浸润(ICI)聚类中预后差异表达的基因。然后,这些预后基因用于开发 LASSO Cox 模型,该模型生成一个预后基因特征。使用 Kaplan-Meier 估计、Cox 和 ROC 分析进行验证。我们分析了特征和重要的免疫相关特征。最后,我们对发现的基因特征进行基因集富集分析(GSEA)和免疫浸润分析,以进一步研究功能机制和免疫细胞相互作用。

结果

我们的研究发现,根据训练队列的数据,十六个基因特征(EREG、HPGDS、TSPAN32、ACSM5、SFTPD、SCN7A、CCR2、S100P、KLK12、MS4A1、INHA、HOXB9、CYP4B1、SPOCK1、STAP1 和 ACAP1)具有预后价值。该预后特征通过 Kaplan-Meier、Cox 比例风险和 ROC 曲线得到验证。11/15 个免疫相关特征与我们的特征相关。GSEA 结果表明,我们的基因特征与免疫相关途径密切相关。基于免疫浸润分析的结果,可以推断出签名的预后意义很大程度上归因于静止肥大细胞。

结论

我们使用生物信息学确定了一个新的、稳健的十六个基因特征。我们还发现,该特征的预后能力与 LUAD 患者静止肥大细胞浸润密切相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验