Suppr超能文献

通过机器学习势快速获取MoTiCT(T = -O和-F)和Janus MoTiCOF MXenes的晶格热导率和声子准粒子光谱。

Fast access of the lattice thermal conductivity and phonon quasiparticle spectra of MoTiCT (T = -O and -F) and Janus MoTiCOF MXenes from machine learning potentials.

作者信息

Qiu Yiding, Jing Ziang, Liu Haoliang, He Huaxuan, Wu Kai, Cheng Yonghong, Xiao Bing

机构信息

School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.

出版信息

Nanoscale. 2024 Apr 18;16(15):7645-7659. doi: 10.1039/d4nr00015c.

Abstract

The presence of strong anharmonic effects in surface functionalized MXenes greatly challenges the use of harmonic lattice dynamics calculations to predict their phonon spectra and lattice thermal conductivity at finite temperatures. Herein, we demonstrate the workflow for training and validating machine learning potentials in terms of moment tensor potential (MTP) for MXenes including MoTiC, MoTiCO, MoTiCF and Janus-MoTiCOF monolayers. Then, the MTPs of MXenes are successfully combined with the harmonic lattice dynamics calculations to obtain the temperature renormalized phonon spectra, three-phonon scattering rates, phonon relaxation times and lattice thermal conductivity at finite temperatures. Furthermore, combining MTPs with classic molecular dynamics simulations at finite temperatures directly enables the calculation of phonon quasi-particle spectral energy density with a full inclusion of all anharmonic effects in MXenes. Our current results indicate that anharmonic effects are found to be relatively weak in MoTiC and MoTiCO monolayers, whereas the phonon quasi-particle spectral energy densities largely resemble those of harmonic or renormalized lattice dynamics calculations. Significant broadening of spectral energy density at finite temperature is predicted for MoTiCF and Janus-MoTiCOF monolayers, implying strong anharmonic effects in those MXenes. Our work paves a new way for fast and reliable calculation of the phonon scattering process and lattice thermal conductivity of MXenes within MTPs trained from first-principles molecular dynamics simulations in the future.

摘要

表面功能化的MXenes中存在强烈的非谐效应,这对使用简谐晶格动力学计算来预测其在有限温度下的声子谱和晶格热导率提出了巨大挑战。在此,我们展示了针对包括MoTiC、MoTiCO、MoTiCF和Janus-MoTiCOF单层在内的MXenes,根据矩张量势(MTP)训练和验证机器学习势的工作流程。然后,将MXenes的MTP成功地与简谐晶格动力学计算相结合,以获得温度重整化的声子谱、三声子散射率、声子弛豫时间和有限温度下的晶格热导率。此外,将MTP与有限温度下的经典分子动力学模拟相结合,直接能够计算声子准粒子谱能量密度,且完全包含了MXenes中的所有非谐效应。我们目前的结果表明,在MoTiC和MoTiCO单层中发现非谐效应相对较弱,而声子准粒子谱能量密度在很大程度上类似于简谐或重整化晶格动力学计算的结果。预测MoTiCF和Janus-MoTiCOF单层在有限温度下谱能量密度会有显著展宽,这意味着这些MXenes中存在强烈的非谐效应。我们的工作为未来在基于第一性原理分子动力学模拟训练的MTP内快速可靠地计算MXenes的声子散射过程和晶格热导率铺平了一条新道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验