Suppr超能文献

加速MXenes中晶格热导率的计算:一种机器学习力场方法。

Accelerating Lattice Thermal Conductivity Calculations in MXenes: A Machine Learning Force Field Approach.

作者信息

Thanasarnsurapong Thanasee, Jana Sourav Kanti, Detrattanawichai Panyalak, Namunmong Waraporn, Hirunpinyopas Wisit, Iamprasertkun Pawin, Boonchun Adisak

机构信息

Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.

Department of Materials, Imperial College London, London SW7 2AZ, U.K.

出版信息

ACS Mater Au. 2025 Jun 26;5(5):823-830. doi: 10.1021/acsmaterialsau.5c00043. eCollection 2025 Sep 10.

Abstract

Traditionally, lattice thermal conductivity is evaluated using the phonon Boltzmann transport equation (PBTE) in combination with density functional theory (DFT) calculations. However, this approach is computationally intensive. In this study, we predicted lattice thermal conductivity of TiC and TiC MXenes, along with their functionalized variants featuring surface terminations (O, F, OH), by using active DFT-based on-the-fly machine learning force fields (MLFF). The predicted thermal conductivities of TiC and TiC are 73.10 and 101.15 W m K, respectively, close to previously calculated DFT values. The introduction of surface functional groups significantly reduces the lattice thermal conductivity. Furthermore, the MLFF-based predictions of lattice thermal conductivity are tens to thousands of times faster than conventional DFT calculations, dramatically accelerating the study of thermal transport in MXenes. This efficiency highlights the potential of MLFF as a powerful tool for exploring and optimizing the thermal properties of two-dimensional materials.

摘要

传统上,晶格热导率是通过将声子玻尔兹曼输运方程(PBTE)与密度泛函理论(DFT)计算相结合来评估的。然而,这种方法计算量很大。在本研究中,我们通过使用基于主动DFT的即时机器学习力场(MLFF)预测了TiC和TiC MXene的晶格热导率,以及具有表面端基(O、F、OH)的功能化变体的晶格热导率。预测的TiC和TiC的热导率分别为73.10和101.15 W m K,接近先前计算的DFT值。表面官能团的引入显著降低了晶格热导率。此外,基于MLFF的晶格热导率预测比传统的DFT计算快数十到数千倍,极大地加速了对MXene中热输运的研究。这种效率突出了MLFF作为探索和优化二维材料热性能的强大工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c73e/12426785/9cbc30f5ba20/mg5c00043_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验