Department of Physics, Jadavpur University, Kolkata-700032, India.
Department of Physics, Bangabasi College, Kolkata-700009, India.
Dalton Trans. 2024 Apr 16;53(15):6690-6708. doi: 10.1039/d4dt00166d.
The drawbacks inherent to traditional antibacterial therapies, coupled with the escalating prevalence of multi-drug resistant (MDR) microorganisms, have prompted the imperative need for novel antibacterial strategies. Accordingly, the emerging field of piezocatalysis in semiconductors harnesses mechanical stress to drive chemical reactions by utilizing piezo-generated free charge carriers, presenting a promising technology. To the best of our knowledge, this study is the first to provide a comprehensive overview of the eradication of pathogenic bacteria using few-layer black phosphorus (SCBP) piezo catalyst under mechanical stimuli, along with the exploration of temperature dependent dielectric properties. The synthesis of the piezo catalysts involved a one-step cost-effective sonochemical method, and its structural, morphological, elemental, optical, and overall polarization properties were thoroughly characterized and compared with the traditional method-derived product (TABP). The synthesis-introduced defects, reduced crystalline diameters, modified bandgap (1.76 eV), nanoparticle aggregation, photoluminescence quenching, along with interfacial polarization, synergistically contribute to SCBP's exceptional dielectric response (4.596 × 10 @40 Hz), which in turn enhanced the piezocatalytic activity. When subjected to soft ultrasound stimulation at 15 kHz, the piezo catalyst SCBP demonstrated significant ROS-mediated antibacterial activity, resulting in a ∼94.7% mortality rate within 40 minutes. The impact of this study extends to cost-effective energy storage devices and advances in antibacterial therapy, opening new dimensions in both fields.
传统抗菌疗法固有的缺陷,加上多药耐药(MDR)微生物的不断增加,迫切需要新的抗菌策略。因此,半导体中的压电催化这一新兴领域利用压电产生的自由电荷载流子来利用机械应力驱动化学反应,这是一种很有前途的技术。据我们所知,这项研究首次全面概述了在机械刺激下使用少层黑磷(SCBP)压电催化剂来根除致病菌,同时还探讨了温度依赖的介电特性。该压电催化剂的合成涉及一步经济高效的超声化学方法,并对其结构、形态、元素、光学和整体极化特性进行了彻底的表征,并与传统方法衍生的产物(TABP)进行了比较。合成引入的缺陷、减小的结晶直径、改变的能带隙(1.76 eV)、纳米颗粒聚集、光致发光猝灭以及界面极化协同作用导致了 SCBP 异常的介电响应(4.596×10 @40 Hz),从而增强了压电催化活性。当在 15 kHz 的软超声刺激下,该压电催化剂 SCBP 表现出显著的 ROS 介导的抗菌活性,在 40 分钟内导致约 94.7%的死亡率。这项研究的影响扩展到了具有成本效益的储能装置和抗菌疗法的进步,为这两个领域开辟了新的维度。