Zhang Zuolin, Li Mengjia, Li Ru, Zhuang Xinmeng, Wang Chenglin, Shang Xueni, He Dongmei, Chen Jiangzhao, Chen Cong
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China.
Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China.
Adv Mater. 2024 Jun;36(24):e2313860. doi: 10.1002/adma.202313860. Epub 2024 Apr 4.
Ion migration-induced intrinsic instability and large-area fabrication pose a tough challenge for the commercial deployment of perovskite photovoltaics. Herein, an interface heterojunction and metal electrode stabilization strategy is developed by suppressing ion migration via managing lead-based imperfections. After screening a series of cations and nonhalide anions, the ideal organic salt molecule dimethylammonium trifluoroacetate (DMATFA) consisting of dimethylammonium (DMA) cation and trifluoroacetate (TFA) anion is selected to manipulate the surface of perovskite films. DMA enables the conversion of active excess and/or unreacted PbI into stable new phase DMAPbI, inhibiting photodecomposition of PbI and ion migration. Meanwhile, TFA can suppress iodide ion migration through passivating undercoordinated Pb and/or iodide vacancies. DMA and TFA synergistically stabilize the heterojunction interface and silver electrode. The DMATFA-treated inverted perovskite solar cells and modules achieve a maximum efficiency of 25.03% (certified 24.65%, 0.1 cm) and 20.58% (63.74 cm), respectively, which is the record efficiency ever reported for the devices based on vacuum flash evaporation technology. The DMATFA modification results in outstanding operational stability, as evidenced by maintaining 91% of its original efficiency after 1520 h of maximum power point continuous tracking.
离子迁移引起的本征不稳定性和大面积制造对钙钛矿光伏器件的商业应用构成了严峻挑战。在此,通过管理基于铅的缺陷来抑制离子迁移,开发了一种界面异质结和金属电极稳定策略。在筛选了一系列阳离子和非卤化物阴离子之后,选择了由二甲基铵(DMA)阳离子和三氟乙酸根(TFA)阴离子组成的理想有机盐分子二甲基铵三氟乙酸酯(DMATFA)来处理钙钛矿薄膜表面。DMA能够将过量的活性和/或未反应的PbI转化为稳定的新相DMAPbI,抑制PbI的光分解和离子迁移。同时,TFA可以通过钝化低配位的Pb和/或碘空位来抑制碘离子迁移。DMA和TFA协同稳定异质结界面和银电极。经DMATFA处理的倒置钙钛矿太阳能电池和组件的最大效率分别达到25.03%(认证效率24.65%,面积0.1平方厘米)和20.58%(面积63.74平方厘米),这是基于真空闪蒸蒸发技术的器件所报道的最高效率记录。DMATFA修饰带来了出色的运行稳定性,在最大功率点连续跟踪1520小时后仍保持其原始效率的91%,即证明了这一点。