Ojha Deepak, Penschke Christopher, Saalfrank Peter
Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany.
Phys Chem Chem Phys. 2024 Apr 3;26(14):11084-11093. doi: 10.1039/d3cp05964b.
Porous graphitic materials containing nitrogen are promising catalysts for photo(electro)chemical reactions, notably water splitting, but can also serve as "molecular sieves". Nitrogen increases the hydrophilicity of the graphite parent material, among other effects. A deeper understanding of how water interacts with C- and N-containing layered materials, if and which differences exist between materials with different N content and pore size, and what the role of water dynamics is - a prerequsite for catalysis and sieving - is largely absent, however. Vibrational spectroscopy can answer some of these questions. In this work, the vibrational dynamics and spectroscopy of deuterated water molecules (DO) mimicking dense water layers at room temperature on the surfaces of two different C/N-based materials with different N content and pore size, namely graphitic CN (g-CN) and CN, are studied using molecular dynamics (AIMD). In particular, time-dependent vibrational sum frequency generation (TD-vSFG) spectra of the OD modes and also time-averaged vSFG spectra and OD frequency distributions are computed. This allows us to distinguish "free" (dangling) OD bonds from OD bonds that are bound in a H-bonded water network or at the surface - with subtle differences between the two surfaces and also to a pure water/air interface. It is found that the temporal decay of OD modes is very similar on both surfaces with a correlation time near 4 ps. In contrast, TD-vSFG spectra reveal that the interconversion time from "bonded" to "free" OD bonds is about 8 ps for water on CN and thus twice as long as for g-CN, demonstrating a propensity of the former material to stabilize bonded OD bonds.
含氮的多孔石墨材料是用于光(电)化学反应(尤其是水分解)的有前景的催化剂,但也可作为“分子筛”。除其他作用外,氮还增加了石墨母体材料的亲水性。然而,对于水如何与含碳和氮的层状材料相互作用、不同氮含量和孔径的材料之间是否存在差异以及存在哪些差异,以及水动力学的作用是什么(催化和筛分的先决条件),目前还缺乏深入了解。振动光谱可以回答其中一些问题。在这项工作中,使用分子动力学(AIMD)研究了在两种不同氮含量和孔径的基于碳/氮的材料(即石墨型CN(g-CN)和CN)表面上模拟室温下致密水层的重水(D₂O)分子的振动动力学和光谱。特别地,计算了OD模式的时间相关振动和频产生(TD-vSFG)光谱以及时间平均vSFG光谱和OD频率分布。这使我们能够区分“自由”(悬空)的OD键与在氢键水网络中或表面结合的OD键——两种表面之间以及与纯水/空气界面之间存在细微差异。结果发现,两种表面上OD模式的时间衰减非常相似,相关时间接近4皮秒。相比之下,TD-vSFG光谱显示,对于CN上的水,从“结合”到“自由”OD键的相互转换时间约为8皮秒,因此是g-CN的两倍,这表明前一种材料倾向于稳定结合的OD键。