Ekwe Adaeze Precious, Au Raymond, Zhang Ping, McEnroe Benjamin A, Tan Mei Ling, Saldan Alda, Henden Andrea S, Hutchins Cheryl J, Henderson Ashleigh, Mudie Kari, Kerr Keri, Fuery Madonna, Kennedy Glen A, Hill Geoffrey R, Tey Siok-Keen
Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia.
Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
Cytotherapy. 2024 Jul;26(7):719-728. doi: 10.1016/j.jcyt.2024.02.023. Epub 2024 Mar 5.
Regulatory T cells (Tregs) are the main mediators of peripheral tolerance. Treg-directed therapy has shown promising results in preclinical studies of diverse immunopathologies. At present, the clinical applicability of adoptive Treg transfer is limited by difficulties in generating Tregs at sufficient cell dose and purity.
We developed a Good Manufacturing Practice (GMP) compliant method based on closed-system multiparametric Fluorescence-Activated Cell Sorting (FACS) to purify Tregs, which are then expanded in vitro and gene-marked with a clinical grade retroviral vector to enable in vivo fate tracking. Following small-scale optimization, we conducted four clinical-scale processing runs.
We showed that Tregs could be enriched to 87- 92% purity following FACS-sorting, and expanded and transduced to yield clinically relevant cell dose of 136-732×10 gene-marked cells, sufficient for a cell dose of at least 2 × 10 cells/kg. The expanded Tregs were highly demethylated in the FOXP3 Treg-specific demethylated region (TSDR), consistent with bona fide natural Tregs. They were suppressive in vitro, but a small percentage could secrete proinflammatory cytokines, including interferon-γ and interleukin-17A.
This study demonstrated the feasibility of isolating, expanding and gene-marking Tregs in clinical scale, thus paving the way for future phase I trials that will advance knowledge about the in vivo fate of transferred Tregs and its relationship with concomitant Treg-directed pharmacotherapy and clinical response.
调节性T细胞(Tregs)是外周免疫耐受的主要介导者。在多种免疫病理疾病的临床前研究中,针对Tregs的治疗已显示出有前景的结果。目前,过继性Treg转移的临床适用性受到难以产生足够细胞剂量和纯度的Tregs的限制。
我们开发了一种符合药品生产质量管理规范(GMP)的方法,该方法基于封闭系统多参数荧光激活细胞分选(FACS)来纯化Tregs,然后在体外进行扩增,并用临床级逆转录病毒载体进行基因标记,以实现体内命运追踪。在小规模优化之后,我们进行了四次临床规模的处理流程。
我们表明,经FACS分选后,Tregs可富集至纯度为87% - 92%,并进行扩增和转导,以产生临床相关的细胞剂量,即136 - 732×10个基因标记细胞,足以达到至少2×10个细胞/千克的细胞剂量。扩增后的Tregs在FOXP3 Treg特异性去甲基化区域(TSDR)高度去甲基化,与真正的天然Tregs一致。它们在体外具有抑制作用,但一小部分可分泌促炎细胞因子,包括干扰素-γ和白细胞介素-17A。
本研究证明了在临床规模上分离、扩增和基因标记Tregs的可行性,从而为未来的I期试验铺平了道路,这些试验将增进我们对转移Tregs的体内命运及其与伴随的Treg导向药物治疗和临床反应之间关系的了解。