Suppr超能文献

位置感知图神经网络:主动学习节点相对位置。

Position-Sensing Graph Neural Networks: Proactively Learning Nodes Relative Positions.

作者信息

Zhang Yiqun, Qin Zhenyue, Anwar Saeed, Kim Dongwoo, Liu Yang, Ji Pan, Gedeon Tom

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Mar;36(3):5787-5794. doi: 10.1109/TNNLS.2024.3374464. Epub 2025 Feb 28.

Abstract

Most existing graph neural networks (GNNs) learn node embeddings using the framework of message passing and aggregation. Such GNNs are incapable of learning relative positions between graph nodes within a graph. To empower GNNs with the awareness of node positions, some nodes are set as anchors. Then, using the distances from a node to the anchors, GNNs can infer relative positions between nodes. However, position-aware GNNs (P-GNNs) arbitrarily select anchors, leading to compromising position awareness and feature extraction. To eliminate this compromise, we demonstrate that selecting evenly distributed and asymmetric anchors is essential. On the other hand, we show that choosing anchors that can aggregate embeddings of all the nodes within a graph is NP-complete. Therefore, devising efficient optimal algorithms in a deterministic approach is practically not feasible. To ensure position awareness and bypass NP-completeness, we propose position-sensing GNNs (PSGNNs), learning how to choose anchors in a backpropagatable fashion. Experiments verify the effectiveness of PSGNNs against state-of-the-art GNNs, substantially improving performance on various synthetic and real-world graph datasets while enjoying stable scalability. Specifically, PSGNNs on average boost area under the curve (AUC) more than 14% for pairwise node classification and 18% for link prediction over the existing state-of-the-art position-aware methods. Our source code is publicly available at: https://github.com/ZhenyueQin/PSGNN.

摘要

大多数现有的图神经网络(GNN)使用消息传递和聚合框架来学习节点嵌入。这类GNN无法学习图内图节点之间的相对位置。为了使GNN具备节点位置感知能力,一些节点被设置为锚点。然后,利用节点到锚点的距离,GNN可以推断节点之间的相对位置。然而,位置感知GNN(P-GNN)随意选择锚点,导致位置感知和特征提取受到影响。为了消除这种影响,我们证明选择均匀分布且不对称的锚点至关重要。另一方面,我们表明选择能够聚合图内所有节点嵌入的锚点是NP完全问题。因此,以确定性方法设计高效的最优算法实际上是不可行的。为了确保位置感知并避开NP完全性,我们提出了位置感知GNN(PSGNN),学习如何以可反向传播的方式选择锚点。实验验证了PSGNN相对于现有先进GNN的有效性,在各种合成和真实世界的图数据集上显著提高了性能,同时具有稳定的可扩展性。具体而言,与现有的先进位置感知方法相比,PSGNN在成对节点分类任务中平均将曲线下面积(AUC)提高了14%以上,在链接预测任务中提高了18%。我们的源代码可在以下网址公开获取:https://github.com/ZhenyueQin/PSGNN

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验