Suppr超能文献

通过结合神经网络-极端学习机(NN-EN)模型的卷积神经网络(CNN)对表面增强拉曼光谱(SERS)进行综合分析,实现水溶液中混合抗生素的快速鉴别和比例定量。

Rapid discrimination and ratio quantification of mixed antibiotics in aqueous solution through integrative analysis of SERS spectra via CNN combined with NN-EN model.

作者信息

Yuan Quan, Yao Lin-Fei, Tang Jia-Wei, Ma Zhang-Wen, Mou Jing-Yi, Wen Xin-Ru, Usman Muhammad, Wu Xiang, Wang Liang

机构信息

Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province 210000, China.

School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province 210000, China.

出版信息

J Adv Res. 2025 Mar;69:61-74. doi: 10.1016/j.jare.2024.03.016. Epub 2024 Mar 24.

Abstract

INTRODUCTION

Abusing antibiotic residues in the natural environment has become a severe public health and ecological environmental problem. The side effects of its biochemical and physiological consequences are severe. To avoid antibiotic contamination in water, implementing universal and rapid antibiotic residue detection technology is critical to maintaining antibiotic safety in aquatic environments. Surface-enhanced Raman spectroscopy (SERS) provides a powerful tool for identifying small molecular components with high sensitivity and selectivity. However, it remains a challenge to identify pure antibiotics from SERS spectra due to coexisting components in the mixture.

OBJECTIVES

In this study, an intelligent analysis model for the SERS spectrum based on a deep learning algorithm was proposed for rapid identification of the antibiotic components in the mixture and quantitative determination of the ratios of these components.

METHODS

We established a water environment system containing three antibiotic residues of ciprofloxacin, doxycycline, and levofloxacin. To facilitate qualitative and quantitative analysis of the SERS spectra antibiotic mixture datasets, we developed a computational framework integrating a convolutional neural network (CNN) and a non-negative elastic network (NN-EN) method.

RESULTS

The experimental results demonstrate that the CNN model has a recognition accuracy of 98.68%, and the interpretation analysis of Shapley Additive exPlanations (SHAP) shows that our model can specifically focus on the characteristic peak distribution. In contrast, the NN-EN model can accurately quantify each component's ratio in the mixture.

CONCLUSION

Integrating the SERS technique assisted by the CNN combined with the NN-EN model exhibits great potential for rapid identification and high-precision quantification of antibiotic residues in aquatic environments.

摘要

引言

滥用自然环境中的抗生素残留已成为严重的公共卫生和生态环境问题。其生化和生理后果的副作用十分严重。为避免水中抗生素污染,实施通用且快速的抗生素残留检测技术对于维持水生环境中的抗生素安全至关重要。表面增强拉曼光谱(SERS)为高灵敏度和高选择性地识别小分子成分提供了强大工具。然而,由于混合物中存在共存成分,从SERS光谱中识别纯抗生素仍然是一个挑战。

目的

本研究提出一种基于深度学习算法的SERS光谱智能分析模型,用于快速识别混合物中的抗生素成分并定量测定这些成分的比例。

方法

我们建立了一个包含环丙沙星、强力霉素和左氧氟沙星三种抗生素残留的水环境系统。为便于对SERS光谱抗生素混合物数据集进行定性和定量分析,我们开发了一个集成卷积神经网络(CNN)和非负弹性网络(NN-EN)方法的计算框架。

结果

实验结果表明,CNN模型的识别准确率为98.68%,Shapley值相加解释(SHAP)的解释分析表明我们的模型能够特别关注特征峰分布。相比之下,NN-EN模型能够准确量化混合物中各成分的比例。

结论

将CNN辅助的SERS技术与NN-EN模型相结合,在快速识别和高精度定量水生环境中的抗生素残留方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bcb/11954828/3edce5569a96/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验