Suppr超能文献

受生物启发的超疏水 SERS 基底,用于在纳摩尔以下的复杂生物基质中进行机器学习辅助 miRNA 检测。

Bioinspired superhydrophobic SERS substrates for machine learning assisted miRNA detection in complex biomatrix below femtomolar limit.

机构信息

Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic.

Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic.

出版信息

Anal Chim Acta. 2023 Oct 16;1278:341708. doi: 10.1016/j.aca.2023.341708. Epub 2023 Aug 11.

Abstract

Surface-enhanced Raman spectroscopy (SERS) is an analytical method with high potential in the field of medicine. The design of SERS substrates, based on specific morphology and/or chemical modification, allow the recognition of the presence of specific analytes with precision close to a single-molecule detection limit. However, the SERS analysis of real samples is significantly complicated by the presence of a large number of "minor" molecules that can shield the signal from the target analyte and make it impossible to determine it in practice. In this work, an advanced SERS approach was used for the detection of cancer-related miRNA-21 in blood plasma, used as a molecular model background. The approach was based on the combination of the biomimetic plasmon-active SERS substrate, its tuned surface chemistry and advanced SERS data analysis, making use of artificial machine learning. In the first step, biomimetic SERS substrates were created using a butterfly wing as a starting template. The substrates were covered by thin Au layer and covalently grafted with hydrophobic chemical moieties to introduce superhydrophobic and water-adhesive properties. The self-concentration of the analyte on the substrates was achieved by minimizing the contact area between the analyte drop and the substrate, which is facilitated by surface superhydrophobicity and additionally enhanced by drop evaporation on the flipped over substrate. Due to the presence of cancer miRNA and blood plasma background, the measured SERS spectra represent a complex of interfering peaks. Thus, their interpretation was carried out using a specially trained machine learning model. As a result, reliable and repeatable quantitative detection of miRNAs below the femtomolar level (up to 10 M) on the background of human blood plasma becomes possible.

摘要

表面增强拉曼光谱(SERS)是一种在医学领域具有巨大潜力的分析方法。基于特定形态和/或化学修饰的 SERS 基底的设计,使得能够以接近单分子检测限的精度识别特定分析物的存在。然而,由于存在大量可以屏蔽目标分析物信号并使其在实际中无法确定的“次要”分子,SERS 对实际样品的分析变得显著复杂化。在这项工作中,使用一种先进的 SERS 方法来检测血浆中的癌症相关 miRNA-21,将其用作分子模型背景。该方法基于仿生等离子体活性 SERS 基底的组合、其调谐的表面化学和先进的 SERS 数据分析,利用人工机器学习。在第一步中,使用蝴蝶翅膀作为起始模板来创建仿生 SERS 基底。基底覆盖有薄的 Au 层,并通过共价键合疏水性化学基团来引入超疏水性和水粘性。通过最小化分析物滴与基底之间的接触面积来实现分析物在基底上的自浓缩,这得益于表面超疏水性,并且通过在翻转的基底上的液滴蒸发进一步增强。由于存在癌症 miRNA 和血液血浆背景,所测量的 SERS 光谱代表了一系列干扰峰。因此,使用专门训练的机器学习模型对其进行解释。结果,在人类血浆背景下,能够可靠且可重复地检测低至飞摩尔水平(高达 10^-15 M)的 miRNA。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验