Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany.
Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany.
BMC Urol. 2024 Mar 26;24(1):71. doi: 10.1186/s12894-024-01460-5.
Utilizing personalized risk assessment for clinically significant prostate cancer (csPCa) incorporating multiparametric magnetic resonance imaging (mpMRI) reduces biopsies and overdiagnosis. We validated both multi- and univariate risk models in biopsy-naïve men, with and without the inclusion of mpMRI data for csPCa detection.
N = 565 men underwent mpMRI-targeted prostate biopsy, and the diagnostic performance of risk calculators (RCs), mpMRI alone, and clinical measures were compared using receiver operating characteristic curve (ROC) analysis and decision curve analysis (DCA). Subgroups were stratified based on mpMRI findings and quality.
csPCa was detected in 56.3%. PI-RADS score achieved the highest area under the curve (AUC) when comparing univariate risk models (AUC 0.82, p < 0.001). Multivariate RCs showed only marginal improvement in csPCa detection compared to PI-RADS score alone, with just one of four RCs showing significant superiority. In mpMRI-negative cases, the non-MRI-based RC performed best (AUC 0.80, p = 0.016), with the potential to spare biopsies for 23%. PSA-density and multivariate RCs demonstrated comparable performance for PI-RADS 3 constellation (AUC 0.65 vs. 0.60-0.65, p > 0.5; saved biopsies 16%). In men with suspicious mpMRI, both mpMRI-based RCs and the PI-RADS score predicted csPCa excellently (AUC 0.82-0.79 vs. 0.80, p > 0.05), highlighting superior performance compared to non-MRI-based models (all p < 0.002). Quality-assured imaging consistently improved csPCa risk stratification across all subgroups.
In tertiary centers serving a high-risk population, high-quality mpMRI provides a simple yet effective way to assess the risk of csPCa. Using multivariate RCs reduces multiple biopsies, especially in mpMRI-negative and PI-RADS 3 constellation.
利用包含多参数磁共振成像(mpMRI)的针对临床显著前列腺癌(csPCa)的个性化风险评估可减少活检和过度诊断。我们在未接受过活检的男性中验证了多变量和单变量风险模型,同时包括了用于 csPCa 检测的 mpMRI 数据。
共有 565 名男性接受了 mpMRI 靶向前列腺活检,使用 ROC 分析和决策曲线分析(DCA)比较了风险计算器(RCs)、mpMRI 单独和临床指标的诊断性能。根据 mpMRI 结果和质量对亚组进行分层。
csPCa 的检出率为 56.3%。当比较单变量风险模型时,PI-RADS 评分获得了最高的曲线下面积(AUC)(AUC 0.82,p<0.001)。与 PI-RADS 评分单独相比,多变量 RCs 仅在检测 csPCa 方面略有改善,只有四分之一的 RCs 显示出显著优势。在 mpMRI 阴性病例中,基于非 MRI 的 RC 表现最佳(AUC 0.80,p=0.016),有潜力为 23%的患者节省活检。PSA 密度和多变量 RCs 对 PI-RADS 3 构型的表现相当(AUC 0.65 与 0.60-0.65,p>0.5;节省活检 16%)。在有可疑 mpMRI 的男性中,基于 mpMRI 的 RCs 和 PI-RADS 评分都能很好地预测 csPCa(AUC 0.82-0.79 与 0.80,p>0.05),与非 MRI 模型相比表现更优(均 p<0.002)。质量保证的成像在所有亚组中都能提高 csPCa 风险分层。
在为高危人群服务的三级中心,高质量的 mpMRI 提供了一种简单而有效的评估 csPCa 风险的方法。使用多变量 RCs 可减少多次活检,特别是在 mpMRI 阴性和 PI-RADS 3 构型中。