Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Urol Oncol. 2024 May;42(5):158.e17-158.e27. doi: 10.1016/j.urolonc.2024.01.021. Epub 2024 Feb 22.
The Prostate Imaging Reporting and Data System (PI-RADS) is an established reporting scheme for multiparametric magnetic resonance imaging (mpMRI) to distinguish clinically significant prostate cancer (csPCa). Deep learning (DL) holds great potential for automating csPCa classification on mpMRI.
To compare the performance between a DL algorithm and PI-RADS categorization in PCa detection and csPCa classification, we included 1,729 consecutive patients who underwent radical prostatectomy or biopsy in Tongji hospital. We developed DL models by integrating individual mpMRI sequences and employing an ensemble approach for distinguishing between csPCa and CiSPCa (specifically defined as PCa with a Gleason group 1 or benign prostate disease, training cohort: 1,285 patients vs. external testing cohort: 315 patients).
DL-based models exhibited higher csPCa detection rates than PI-RADS categorization (area under the curve [AUC]: 0.902; sensitivity: 0.728; specificity: 0.906 vs. AUC: 0.759; sensitivity: 0.761; specificity: 0.756) (P < 0.001) Notably, DL networks exhibited significant strength in the prostate-specific antigen (PSA) arm < 10 ng/ml compared with PI-RADS assessment (AUC: 0.788; sensitivity: 0.588; specificity: 0.883 vs. AUC: 0.618; sensitivity: 0.379; specificity: 0.763) (P = 0.041).
We developed DL-based mpMRI ensemble models for csPCa classification with improved sensitivity, specificity, and accuracy compared with clinical PI-RADS assessment. In the PSA-stratified condition, the DL ensemble model performed better than PI-RADS in the detection of csPCa in both the high PSA group and the low PSA group.
前列腺成像报告和数据系统(PI-RADS)是一种用于区分临床显著前列腺癌(csPCa)的多参数磁共振成像(mpMRI)报告方案。深度学习(DL)在 mpMRI 上自动化 csPCa 分类方面具有巨大潜力。
为了比较 DL 算法和 PI-RADS 分类在前列腺癌检测和 csPCa 分类中的性能,我们纳入了在同济医院接受根治性前列腺切除术或活检的 1729 例连续患者。我们通过整合个体 mpMRI 序列并采用集成方法来区分 csPCa 和 CiSPCa(具体定义为 Gleason 组 1 或良性前列腺疾病的前列腺癌,训练队列:1285 例患者与外部测试队列:315 例患者)来开发 DL 模型。
基于 DL 的模型比 PI-RADS 分类具有更高的 csPCa 检测率(曲线下面积 [AUC]:0.902;敏感性:0.728;特异性:0.906 与 AUC:0.759;敏感性:0.761;特异性:0.756)(P<0.001)。值得注意的是,与 PI-RADS 评估相比,DL 网络在 PSA<10ng/ml 臂中表现出显著优势(AUC:0.788;敏感性:0.588;特异性:0.883 与 AUC:0.618;敏感性:0.379;特异性:0.763)(P=0.041)。
我们开发了基于 DL 的 mpMRI 集成模型,用于 csPCa 分类,与临床 PI-RADS 评估相比,具有更高的敏感性、特异性和准确性。在 PSA 分层条件下,在高 PSA 组和低 PSA 组中,DL 集成模型在 csPCa 的检测中比 PI-RADS 表现更好。