Stevens Institute of Technology, Department of Biomedical Engineering, Hoboken, New Jersey, United States.
Stevens Institute of Technology, Semcer Center for Healthcare Innovation, Hoboken, New Jersey, United States.
J Biomed Opt. 2024 Mar;29(3):036004. doi: 10.1117/1.JBO.29.3.036004. Epub 2024 Mar 25.
There is a significant need for the generation of virtual histological information from coronary optical coherence tomography (OCT) images to better guide the treatment of coronary artery disease (CAD). However, existing methods either require a large pixel-wise paired training dataset or have limited capability to map pathological regions.
The aim of this work is to generate virtual histological information from coronary OCT images, without a pixel-wise paired training dataset while capable of providing pathological patterns.
We design a structurally constrained, pathology-aware, transformer generative adversarial network, namely structurally constrained pathology-aware convolutional transformer generative adversarial network (SCPAT-GAN), to generate virtual stained H&E histology from OCT images. We quantitatively evaluate the quality of virtual stained histology images by measuring the Fréchet inception distance (FID) and perceptual hash value (PHV). Moreover, we invite experienced pathologists to evaluate the virtual stained images. Furthermore, we visually inspect the virtual stained image generated by SCPAT-GAN. Also, we perform an ablation study to validate the design of the proposed SCPAT-GAN. Finally, we demonstrate 3D virtual stained histology images.
Compared to previous research, the proposed SCPAT-GAN achieves better FID and PHV scores. The visual inspection suggests that the virtual histology images generated by SCPAT-GAN resemble both normal and pathological features without artifacts. As confirmed by the pathologists, the virtual stained images have good quality compared to real histology images. The ablation study confirms the effectiveness of the combination of proposed pathological awareness and structural constraining modules.
The proposed SCPAT-GAN is the first to demonstrate the feasibility of generating both normal and pathological patterns without pixel-wisely supervised training. We expect the SCPAT-GAN to assist in the clinical evaluation of treating the CAD by providing 2D and 3D histopathological visualizations.
从冠状动脉光学相干断层扫描(OCT)图像生成虚拟组织学信息以更好地指导冠状动脉疾病(CAD)的治疗具有重要意义。然而,现有的方法要么需要一个大的像素级配对训练数据集,要么映射病理区域的能力有限。
本工作旨在从冠状动脉 OCT 图像生成虚拟组织学信息,而无需像素级配对训练数据集,同时能够提供病理模式。
我们设计了一种结构约束的、具有病理意识的、变压器生成对抗网络,即结构约束病理感知卷积变压器生成对抗网络(SCPAT-GAN),从 OCT 图像生成虚拟染色 H&E 组织学。我们通过测量 Fréchet 初始距离(FID)和感知哈希值(PHV)来定量评估虚拟染色组织学图像的质量。此外,我们邀请有经验的病理学家评估虚拟染色图像。此外,我们还检查了 SCPAT-GAN 生成的虚拟染色图像。此外,我们进行了消融研究来验证所提出的 SCPAT-GAN 的设计。最后,我们展示了 3D 虚拟染色组织学图像。
与之前的研究相比,所提出的 SCPAT-GAN 获得了更好的 FID 和 PHV 评分。视觉检查表明,SCPAT-GAN 生成的虚拟组织学图像既具有正常特征又具有病理特征,且无伪影。病理学家确认,与真实组织学图像相比,虚拟染色图像质量良好。消融研究证实了所提出的病理意识和结构约束模块的组合的有效性。
所提出的 SCPAT-GAN 是第一个展示在没有像素级监督训练的情况下生成正常和病理模式的可行性的研究。我们希望 SCPAT-GAN 通过提供 2D 和 3D 组织病理学可视化来协助 CAD 的临床评估。