Suppr超能文献

基于渐进式生成对抗网络的真实高分辨率人体计算机断层扫描图像合成:视觉图灵测试

Realistic High-Resolution Body Computed Tomography Image Synthesis by Using Progressive Growing Generative Adversarial Network: Visual Turing Test.

作者信息

Park Ho Young, Bae Hyun-Jin, Hong Gil-Sun, Kim Minjee, Yun JiHye, Park Sungwon, Chung Won Jung, Kim NamKug

机构信息

Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea.

Department of Medicine, University of Ulsan College of Medicine & Asan Medical Center, Seoul, Republic of Korea.

出版信息

JMIR Med Inform. 2021 Mar 17;9(3):e23328. doi: 10.2196/23328.

Abstract

BACKGROUND

Generative adversarial network (GAN)-based synthetic images can be viable solutions to current supervised deep learning challenges. However, generating highly realistic images is a prerequisite for these approaches.

OBJECTIVE

The aim of this study was to investigate and validate the unsupervised synthesis of highly realistic body computed tomography (CT) images by using a progressive growing GAN (PGGAN) trained to learn the probability distribution of normal data.

METHODS

We trained the PGGAN by using 11,755 body CT scans. Ten radiologists (4 radiologists with <5 years of experience [Group I], 4 radiologists with 5-10 years of experience [Group II], and 2 radiologists with >10 years of experience [Group III]) evaluated the results in a binary approach by using an independent validation set of 300 images (150 real and 150 synthetic) to judge the authenticity of each image.

RESULTS

The mean accuracy of the 10 readers in the entire image set was higher than random guessing (1781/3000, 59.4% vs 1500/3000, 50.0%, respectively; P<.001). However, in terms of identifying synthetic images as fake, there was no significant difference in the specificity between the visual Turing test and random guessing (779/1500, 51.9% vs 750/1500, 50.0%, respectively; P=.29). The accuracy between the 3 reader groups with different experience levels was not significantly different (Group I, 696/1200, 58.0%; Group II, 726/1200, 60.5%; and Group III, 359/600, 59.8%; P=.36). Interreader agreements were poor (κ=0.11) for the entire image set. In subgroup analysis, the discrepancies between real and synthetic CT images occurred mainly in the thoracoabdominal junction and in the anatomical details.

CONCLUSIONS

The GAN can synthesize highly realistic high-resolution body CT images that are indistinguishable from real images; however, it has limitations in generating body images of the thoracoabdominal junction and lacks accuracy in the anatomical details.

摘要

背景

基于生成对抗网络(GAN)的合成图像可能是解决当前监督深度学习挑战的可行方案。然而,生成高度逼真的图像是这些方法的一个先决条件。

目的

本研究的目的是通过使用经过训练以学习正常数据概率分布的渐进式增长GAN(PGGAN)来研究和验证高度逼真的人体计算机断层扫描(CT)图像的无监督合成。

方法

我们使用11755例人体CT扫描训练PGGAN。10名放射科医生(4名经验不足5年的放射科医生[第一组],4名经验为5至10年的放射科医生[第二组],以及2名经验超过10年的放射科医生[第三组])使用包含300幅图像的独立验证集(150幅真实图像和150幅合成图像)以二元法评估结果,以判断每幅图像的真实性。

结果

整个图像集中10名阅片者的平均准确率高于随机猜测(分别为1781/3000,59.4%对比1500/3000,50.0%;P<0.001)。然而,在将合成图像识别为假图像方面,视觉图灵测试与随机猜测之间的特异性无显著差异(分别为779/1500,51.9%对比750/1500,50.0%;P=0.29)。不同经验水平的3个阅片者组之间的准确率无显著差异(第一组,696/1200,58.0%;第二组,726/1200,60.5%;第三组,359/600,59.8%;P=0.36)。整个图像集的阅片者间一致性较差(κ=0.11)。在亚组分析中,真实CT图像与合成CT图像之间的差异主要出现在胸腹交界处和解剖细节方面。

结论

GAN可以合成与真实图像难以区分的高度逼真的高分辨率人体CT图像;然而,它在生成胸腹交界处的人体图像方面存在局限性,并且在解剖细节方面缺乏准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2156/8077702/2602fbe15555/medinform_v9i3e23328_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验