Suppr超能文献

基于深度学习辅助的紫外光声显微镜的无标记术中骨组织组织学分析。

Label-free intraoperative histology of bone tissue via deep-learning-assisted ultraviolet photoacoustic microscopy.

机构信息

Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.

Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

出版信息

Nat Biomed Eng. 2023 Feb;7(2):124-134. doi: 10.1038/s41551-022-00940-z. Epub 2022 Sep 19.

Abstract

Obtaining frozen sections of bone tissue for intraoperative examination is challenging. To identify the bony edge of resection, orthopaedic oncologists therefore rely on pre-operative X-ray computed tomography or magnetic resonance imaging. However, these techniques do not allow for accurate diagnosis or for intraoperative confirmation of the tumour margins, and in bony sarcomas, they can lead to bone margins up to 10-fold wider (1,000-fold volumetrically) than necessary. Here, we show that real-time three-dimensional contour-scanning of tissue via ultraviolet photoacoustic microscopy in reflection mode can be used to intraoperatively evaluate undecalcified and decalcified thick bone specimens, without the need for tissue sectioning. We validate the technique with gold-standard haematoxylin-and-eosin histology images acquired via a traditional optical microscope, and also show that an unsupervised generative adversarial network can virtually stain the ultraviolet-photoacoustic-microscopy images, allowing pathologists to readily identify cancerous features. Label-free and slide-free histology via ultraviolet photoacoustic microscopy may allow for rapid diagnoses of bone-tissue pathologies and aid the intraoperative determination of tumour margins.

摘要

获取用于术中检查的骨组织冰冻切片具有挑战性。因此,矫形肿瘤学家依赖于术前 X 射线计算机断层扫描或磁共振成像来识别切除的骨缘。然而,这些技术无法进行准确的诊断或术中确认肿瘤边界,在骨肉瘤中,它们可能导致骨缘比实际需要的宽 10 倍(体积上宽 1000 倍)。在这里,我们展示了通过反射模式的紫外光声显微镜实时三维轮廓扫描可以用于术中评估未脱钙和脱钙的厚骨标本,而无需组织切片。我们通过传统光学显微镜获得的金标准苏木精-伊红组织学图像验证了该技术,还表明无监督生成对抗网络可以虚拟染色紫外光声显微镜图像,使病理学家能够轻松识别癌症特征。通过紫外光声显微镜进行无标记和无载玻片的组织学检查可能允许快速诊断骨组织病理学,并有助于术中确定肿瘤边界。

相似文献

1
Label-free intraoperative histology of bone tissue via deep-learning-assisted ultraviolet photoacoustic microscopy.
Nat Biomed Eng. 2023 Feb;7(2):124-134. doi: 10.1038/s41551-022-00940-z. Epub 2022 Sep 19.
3
Deep learning enables ultraviolet photoacoustic microscopy based histological imaging with near real-time virtual staining.
Photoacoustics. 2021 Oct 2;25:100308. doi: 10.1016/j.pacs.2021.100308. eCollection 2022 Mar.
5
Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy.
Theranostics. 2019 Apr 13;9(9):2541-2554. doi: 10.7150/thno.32655. eCollection 2019.
6
Label-free identification of human glioma xenograft of mouse brain with quantitative ultraviolet photoacoustic histology imaging.
J Biophotonics. 2022 May;15(5):e202100329. doi: 10.1002/jbio.202100329. Epub 2022 Jan 20.
7
DeepDOF-SE: affordable deep-learning microscopy platform for slide-free histology.
Nat Commun. 2024 Apr 5;15(1):2935. doi: 10.1038/s41467-024-47065-2.
8
Ultraviolet metasurface-assisted photoacoustic microscopy with great enhancement in DOF for fast histology imaging.
Photoacoustics. 2023 Jun 28;32:100525. doi: 10.1016/j.pacs.2023.100525. eCollection 2023 Aug.
9
Rapid histological imaging of bone without microtome sectioning using nonlinear microscopy.
Bone. 2022 Jan;154:116254. doi: 10.1016/j.bone.2021.116254. Epub 2021 Nov 4.

引用本文的文献

1
Emerging Photoacoustic Imaging Techniques for Peripheral Arterial Disease.
Curr Treat Options Cardiovasc Med. 2025;27(1):56. doi: 10.1007/s11936-025-01113-2. Epub 2025 Aug 28.
3
Virtual staining of label-free tissue in imaging mass spectrometry.
Sci Adv. 2025 Aug;11(31):eadv0741. doi: 10.1126/sciadv.adv0741. Epub 2025 Aug 1.
4
Recent advancements in molecular photoacoustic tomography.
JPhys Photonics. 2025 Jul 31;7(3):032003. doi: 10.1088/2515-7647/adf167. Epub 2025 Jul 28.
5
Tartrazine-enabled optical clearing for in vivo optical resolution photoacoustic microscopy.
Biomed Opt Express. 2025 May 29;16(6):2504-2515. doi: 10.1364/BOE.565643. eCollection 2025 Jun 1.
8
A comprehensive review of high-performance photoacoustic microscopy systems.
Photoacoustics. 2025 Jun 4;44:100739. doi: 10.1016/j.pacs.2025.100739. eCollection 2025 Aug.

本文引用的文献

1
QuPath: The global impact of an open source digital pathology system.
Comput Struct Biotechnol J. 2021 Jan 21;19:852-859. doi: 10.1016/j.csbj.2021.01.022. eCollection 2021.
2
Generative Adversarial Networks in Digital Pathology: A Survey on Trends and Future Potential.
Patterns (N Y). 2020 Sep 11;1(6):100089. doi: 10.1016/j.patter.2020.100089.
4
Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks.
Nat Med. 2020 Jan;26(1):52-58. doi: 10.1038/s41591-019-0715-9. Epub 2020 Jan 6.
5
Cortex-wide multiparametric photoacoustic microscopy based on real-time contour scanning.
Neurophotonics. 2019 Jul;6(3):035012. doi: 10.1117/1.NPh.6.3.035012. Epub 2019 Sep 19.
7
Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning.
Nat Biomed Eng. 2019 Jun;3(6):466-477. doi: 10.1038/s41551-019-0362-y. Epub 2019 Mar 4.
8
Microscopy with ultraviolet surface excitation for rapid slide-free histology.
Nat Biomed Eng. 2017 Dec;1(12):957-966. doi: 10.1038/s41551-017-0165-y. Epub 2017 Dec 4.
10
Advances in super-resolution photoacoustic imaging.
Quant Imaging Med Surg. 2018 Sep;8(8):724-732. doi: 10.21037/qims.2018.09.14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验